SJG-136 (1) is a sequence-selective DNA-interactive agent that is about to enter phase II clinical trials. Using a HPLC/MS-based methodology developed to evaluate the binding of DNA-interactive agents to oligonucleotides of varying length and sequence, we have demonstrated that, in addition to the previously known interstrand cross-link at Pu-GATC-Py sequences, 1 can form a longer interstrand cross-link at Pu-GAATC-Py sequences, an intrastrand cross-link at both shorter Pu-GATG-Py and longer Pu-GAATG-Py sequences, and, in addition, monoalkylated adducts at suitable PBD binding sites where neither intra- or interstrand cross-links are feasible because of the unavailability of two appropriately positioned guanines. Crucially, we have demonstrated a preference for the extended intrastrand cross-link with Pu-GAATG-Py, which forms more rapidly than the other cross-links (rank order: Pu-GAATG-Py > Pu-GATC-Py >> Pu-GATG-Py and Pu-GAATC-Py). However, thermal denaturation studies suggest that the originally reported Pu-GATC-Py interstrand cross-link is more stable, consistent with the covalent joining of both strands of the duplex and a lower overall distortion of the helix according to modeling studies. These observations impact on the proposed mechanism of action of SJG-136 (1) both in vitro and in vivo, the repair of its adducts and mechanism of resistance in cells, and potentially on the type of pharmacodynamic assay used in clinical trials.
A dynamic equilibrium between covalent 1:1 hairpin and 2:1 duplex DNA adducts of a pyrrolobenzodiazepine (PBD) minor groove binding agent () has been observed for the first time. The equilibrium, which establishes over 1 hour and must require unfolding of both types of adducts, is surprising given that PBDs normally require DNA minor groove structure for binding and take 24 hours for complete reaction with duplex DNA. The equilibrium is interesting from an energetics perspective due to the well known DNA stabilizing effect of PBDs. This observation could have significance for the in vitro and in vivo biological activity of PBDs, as DNA hairpin and loop structures are known to be important in cellular processes such as transcription and replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.