The relationship between dust episodes over Cyprus and specific synoptic patterns has long been considered but also further supported in recent studies by the authors. Having defined a dust episode as a day when the average PM10 measurement exceeds the threshold of 50 mg/(m3 day), the authors have utilized Artificial Neural Networks and synoptic charts, together with satellite and ground measurements, in order to establish a scheme which links specific synoptic patterns with the appearance of dust transport over Cyprus. In an effort to understand better these complicated synoptic-scale phenomena and their associations with dust transport episodes, the authors attempt in the present paper a followup of the previous tasks with the objective to further investigate dust episodes from the point of view of their time trends. The results have shown a tendency for the synoptic situations favoring dust events to increase in the last decades, whereas, the synoptic situations not favoring such events tend to decrease with time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.