This article presents a methodology to extract principal components of large datasets, called C-NLPCA (Cascaded nonlinear principal component analysis), and evaluates its use in the extraction of main human movements in image series, aiming for the development of methodologies and techniques for skill transfer from humans to robotic/virtual agents. The C-NLPCA is an original data multivariate analysis method based on the NLPCA (Nonlinear Principal Component Analysis). This method has as main features the capability of taking principal variability components from a large set of data, considering the existence of possible nonlinear relations among them. The proposed method is used to extract principal movements from video sequence of human activities, which can be reconstructed in cybernetic and robotic contexts. Aiming for the validation of the method a human moving hand test is presented, where C-NLPCA is applied and the patterns of the obtained movements are confronted with traditional linear techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.