Aim The Brazilian campo rupestre is a vegetation associated to ancient mountaintops in eastern South America, spread mainly over disjunct areas of the Espinhaço Range and the Chapada dos Veadeiros. These areas hold outstanding levels of plant diversity and endemism, but despite their uniqueness they have been neglected in recent bioregionalizations for the Neotropical region. Given their particular levels of species richness and endemism, we here test the recognition of these as distinct bioregions within the Chacoan dominion. Location Mountaintops of eastern South America. Methods We listed 1,748 angiosperm species endemic to the campo rupestre of the Espinhaço Range and Chapada dos Veadeiros regions, based on the data gathered from the Brazilian Flora 2020 Project. We extracted all occurrence information available from GBIF (the Global Biodiversity Information Facility) for such list and also for a polygon gathering all the study area, including information from adjacent vegetations. Data went through standard cleaning procedures and a network clustering analysis was performed to delimitate the boundaries of the new bioregions. Results Our data strongly support the recognition of two distinct bioregions along the Espinhaço Range, but none in the Chapada dos Veadeiros. Given their high levels of endemism and singularity within the Chacoan dominion, we formalize two provinces associated to campo rupestre in the Espinhaço Range, naming them as “Chapada Diamantina” and “Southern Espinhaço” provinces. Within the latter province, three districts are also recognized, based on this and previous studies: “Diamantina Plateau”, “Grão‐Mogol” and “Iron Quadrangle” districts. Main conclusions The formalization of new and previously described bioregions highlights the campo rupestre as a vegetation harbouring outstanding levels of species richness and endemism in South America, contributing to a better understanding of biogeographical patterns in the Neotropics. Also, as we follow the International Code of Area Nomenclature as a device to standardize recognition of bioregions, this shall facilitate further biogeographical and conservation studies in these areas. Further assessments with new and revisited data are needed to enable minor scale bioregionalization within the Chacoan dominion.
Species occurrence records provide the basis for many biodiversity studies. They derive from georeferenced specimens deposited in natural history collections and visual observations, such as those obtained through various mobile applications. Given the rapid increase in availability of such data, the control of quality and accuracy constitutes a particular concern. Automatic filtering is a scalable and reproducible means to identify potentially problematic records and tailor datasets from public databases such as the Global Biodiversity Information Facility (GBIF; http://www.gbif.org), for biodiversity analyses. However, it is unclear how much data may be lost by filtering, whether the same filters should be applied across all taxonomic groups, and what the effect of filtering is on common downstream analyses. Here, we evaluate the effect of 13 recently proposed filters on the inference of species richness patterns and automated conservation assessments for 18 Neotropical taxa, including terrestrial and marine animals, fungi, and plants downloaded from GBIF. We find that a total of 44.3% of the records are potentially problematic, with large variation across taxonomic groups (25–90%). A small fraction of records was identified as erroneous in the strict sense (4.2%), and a much larger proportion as unfit for most downstream analyses (41.7%). Filters of duplicated information, collection year, and basis of record, as well as coordinates in urban areas, or for terrestrial taxa in the sea or marine taxa on land, have the greatest effect. Automated filtering can help in identifying problematic records, but requires customization of which tests and thresholds should be applied to the taxonomic group and geographic area under focus. Our results stress the importance of thorough recording and exploration of the meta-data associated with species records for biodiversity research.
28Species occurrence records provide the basis for many biodiversity studies. They derive from geo-referenced specimens deposited in natural history collections and visual observations, such as those obtained through various mobile applications. Given the rapid increase in availability of such data, the control of quality and accuracy constitutes a particular concern. Automatic flagging and filtering are a scalable and reproducible means to identify potentially problematic records in datasets from public databases such as the Global Biodiversity Information Facility (GBIF; www.gbif.org). However, it is unclear how much data may be lost by filtering, whether the same tests should be applied across all taxonomic groups, and what is the effect of filtering for common downstream analyses. Here, we evaluate the effect of 13 recently proposed filters on the inference of species richness patterns and automated conservation assessments for 18 Neotropical taxa including animals, fungi, and plants, terrestrial and marine, downloaded from GBIF. We find that 29-90% of the records are potentially erroneous, with large variation across taxonomic groups. Tests for duplicated information, collection year, basis of record as well as urban areas and coordinates for terrestrial taxa in the sea or marine taxa on land have the greatest effect. While many flagged records might not be de facto erroneous, they could be overly imprecise and increase uncertainty in downstream analyses. Automated flagging can help in identifying problematic records, but requires customization of which tests and thresholds should be applied to the taxonomic group and geographic area under focus. Our results stress the importance of thorough exploration of the meta-data associated with species records for biodiversity research. 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44Publicly available species distribution data have become a crucial resource in biodiversity research, including studies in 46 ecology, biogeography, systematics and conservation biology. In particular, the availability of digitized collections from 47 museums and herbaria, and citizen science observations has increased drastically over the last few years. As of today, 48 the largest public aggregator for geo-referenced species occurrences data, the Global Biodiversity Information Facility 49 (www.gbif.org), provides access to more than 1.3 billion geo-referenced occurrence records for species from across the 50 globe and the tree of life. 51A central challenge to the use of these publicly available species occurrence data in research are erroneous geographic 52 coordinates (Anderson et al. 2016). Errors mostly arise because public databases integrate records collected with 53 different methodologies in different places, at different times; often without centralized curation and only rudimentary 54 meta-data. For instance, erroneous coordinates caused by data-entry errors or automated geo-referencing from vague 55 locality descriptions are common (Maldonado et al. 2015; Yesson et al. 2007)...
The shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora.
Digital accessible knowledge of biodiversity data is an increasingly important source of information in studies of biogeography and conservation. These databases can also reveal temporal, spatial and taxonomical gaps in biodiversity documentation, even in areas that have been intensively studied and from where accurate species lists are available. Therefore, revealing these gaps may help allocating collecting efforts, conservation priorities and strategies for improving database curation. Here, we evaluate potential shortfalls for flowering plants in a tropical hotspot, the Brazilian Atlantic Forest, by cross‐referencing two online repositories of biodiversity data (the Global Biodiversity Information Facility – GBIF – and the Brazilian Flora 2020 floristic database – BFG). We aimed to evaluate the congruence between those repositories, highlighting tendencies in current documentation for this area. We found that from the 7220 reported flowering plant species endemics to the Atlantic Forest, 1573 (22%) have no valid spatial data in GBIF, and 75% of all of the 605,951 records do not present valid spatial information. Most of the missing information is related to species known only from few and old collections with absent or inaccurately georeferenced data. This lack of information may cause a large impact in spatial studies, especially for rare and threatened species. Nevertheless, our analysis also shows that spatial information for the filtered data is highly congruent between GBIF and BFG data, indicating relatively high availability of quality data in large repositories after standard and automatized cleaning procedures. Still, good practices to decrease the impact of losing data are recommended, including more investment in field collections, targeting poorly known species and returning cleaned spatial datasets to online repositories after taxonomic revisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.