As one of synthetic biology’s foundations, biocircuits are a strategy of genetic parts assembling to recognize a signal and to produce a desirable output to interfere with a biological function. In this review, we revisited the progress in the biocircuits technology basis and its mandatory elements, such as the characterization and assembly of functional parts. Furthermore, for a successful implementation, the transcriptional control systems are a relevant point, and the computational tools help to predict the best combinations among the biological parts planned to be used to achieve the desirable phenotype. However, many challenges are involved in delivering and stabilizing the synthetic structures. Some research experiences, such as the golden crops, biosensors, and artificial photosynthetic structures, can indicate the positive and limiting aspects of the practice. Finally, we envision that the modulatory structural feature and the possibility of finer gene regulation through biocircuits can contribute to the complex design of synthetic chromosomes aiming to develop plants and algae with new or improved functions.
Synthetic biology is a new area of science that operates at the intersection of engineering and biology and aims to design and synthesize living organisms and systems to perform new or improved functions. Despite the important role it plays in resolving global issues, instructing synthetic biology can be challenged by a limited availability of specific educational materials and techniques for explaining complex molecular mechanisms. On the other hand, digital fabrication tools, which allow the creation of 3D objects, are increasingly used for educational purposes, and several computational structures of molecular components commonly used in synthetic biology processes are deposited in open databases. Therefore, we hypothesized that the use of computer-assisted design (CAD) and 3D printing to create biomolecular structural models through hands-on interaction, followed by reflective observation, critical and analytical thinking, could enhance students’ learning in synthetic biology. In this sense, the present work describes the design, 3D printing process, and evaluation in classrooms of the molecular models of the first synthetic biological circuit, the genetic toggle switch. The 3D printed molecular structures can be freely downloaded and used by teachers to facilitate the training of STEM students in synthetic biology. Most importantly, the results demonstrated that our resource showed a significant positive impact (p < 0.05) on students’ learning process, indicating that the proposed method helped them better understand the genetic toggle switch.
Synthetic biology is a new area of science that operates at the intersection of engineering and biology and aims to design and synthesize living organisms and systems to perform new or improved functions. This novel biological area is considered of extreme relevance for the development of solutions to global problems. However, its teaching is often inaccessible to students, since many educational resources and methodological procedures are not available for understanding of complex molecular processes. On the other hand, digital fabrication tools, which allow the creation of 3D objects, are increasingly used for educational purposes, and several computational structures of molecular components commonly used in synthetic biology processes are deposited in open databases. Therefore, we hypothesize that the creation of biomolecular structures models by handling 3D physical objects using computer-assisted design (CAD) and additive fabrication based on 3D printing could help professors in synthetic biology teaching. In this sense, the present work describes the design and 3D print of the molecular models of the first synthetic genetic circuit, the toggle switch, which can be freely downloaded and used by teachers to facilitate the training of STEM students in synthetic biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.