Using the thin-layer quantization, we formulate the problem of a Schrödinger particle constrained to move along a coordinate surface of the bi-spherical coordinate system. In three-dimensional space, the free Schrödinger equation is not separable in this coordinate system. However, when we consider the equation for a particle constrained to a given surface, there are only two degrees of freedom. One has to introduce a geometrical potential to attach the particle to the surface. This well-known potential has two contributions: one from Gauss’ curvature and the other from the mean curvature. The Schrödinger equation leads to a general Heun equation. We solve it exactly and present the eigenfunctions and plots of the probability densities, and, as an application of this methodology, we study the problem of an electric charge propagating along these coordinate surfaces in the presence of a uniform magnetic field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.