Abstract:The development of cities has always had a very close relation with water. However, cities directly impact land use patterns and greatly change natural landscapes, aggravating floods. Considering this situation, this paper intends to discuss lowland occupation and city sustainability in what regards urban stormwater management, fluvial space, and river restoration, aiming at minimizing flood risks and improving natural and built environment conditions. River plains tend to be attractive places for a city to grow. From ancient times, levees have been used to protect lowland areas along major watercourses to allow their occupation. However, urban rivers demand space for temporary flood storage. From a systemic point of view, levees along extensive river reaches act as canalization works, limiting river connectivity with flood plains, rising water levels, increasing overtopping risks and transferring floods downstream. Departing from this discussion, four case studies in the Iguaçu-Sarapuí River Basin, a lowland area of Rio de Janeiro State, Brazil, are used to compose a perspective in which the central point refers to the need of respecting watershed limits and giving space to rivers. Different aspects of low-lying city planning are discussed and analyzed concerning the integration of the built and natural environments.
OPEN ACCESSSustainability 2015, 7 11069
Urban flood modelling has been evolving in recent years, due to computational facilities as well as to the possibility of obtaining detailed terrain data. Flood control techniques have also been evolving to integrate both urban flood and urban planning issues. Land use control and flow generation concerns, as well as a set of possible distributed measures favouring storage and infiltration over the watershed, also gained importance in flood control projects, reinforcing the need to model the entire basin space. However, the use of 2D equations with highly detailed digital elevation models do not guarantee good results by their own. Urban geometry, including buildings shapes, walls, earth fills, and other structures may cause significant interference on flood paths. In this context, this paper presents an alternative urban flood model, focusing on the system behaviour and its conceptual interpretation. Urban Flood Cell Model-MODCEL is a hydrological-hydrodynamic model proposed to represent a complex flow network, with a set of relatively simple information, using average values to represent urban landscape through the flow-cell concept. In this work, to illustrate model capabilities, MODCEL is benchmarked in a test proposed by the British Environmental Agency. Then, its capability to represent storm drains is verified using measured data and a comparison with Storm Water Management Model (SWMM). Finally, it is applied in a lowland area of the Venetian continental plains, representing floods in a complex setup at the city of Noale and in its surroundings.
Unplanned urbanization is one of the main factors responsible for worsening flood-related problems in cities, increasing the frequency of flooding and flooding depths, consequently degrading both the natural and built environment. Considering this, the use of engineering techniques that reduce runoff and promote urban requalification are an efficient option for managing rainwater. This paper presents a case study of a flood control project using a storm water detention pond, designed to allow multiple uses of an urban space. The operation of the system is evaluated by an urban flow-cell model, known as MODCEL. This application seeks the best configuration for the layout of ‘Celso Peçanha’ Detention Basin, considering the local restrictions imposed by the City of Mesquita – Brazil, and optimized to damp storm flows resulting from rainfall events with return periods up to 50 years. The solution proposed considers the possibility of social urban space uses in flood control projects, revitalizing degraded areas and giving them multiple functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.