Involuntary choreiform movements are clinical hallmark of Huntington's disease, an autosomal dominant neurodegenerative disorder caused by an increased number of CAG trinucleotide repeats in the huntingtin gene. Involuntary movements start with an impairment of facial muscles and then affect trunk and limbs muscles. Huntington's disease symptoms are caused by changes in cortex and striatum neurons induced by mutated huntingtin protein. However, little is known about the impact of this abnormal protein in spinal cord motoneurons that control movement. Therefore, in this study we evaluated abnormalities in the motor unit (spinal cervical motoneurons, motor axons, neuromuscular junctions and muscle) in a mouse model for Huntington's disease (BACHD). Using light, fluorescence, confocal, and electron microscopy, we showed significant changes such as muscle fibers atrophy, fragmentation of neuromuscular junctions, axonal alterations, and motoneurons death in BACHD mice. Noteworthy, the surviving motoneurons from BACHD spinal cords were smaller than WT. We suggest that this loss of larger putative motoneurons is accompanied by a decrease in the expression of fast glycolytic muscle fibers in this model for Huntington's disease. These observations show spinal cord motoneurons loss in BACHD that might help to understand neuromuscular changes in Huntington's disease.
Huntington's disease (HD) is a neurodegenerative genetic disorder. Although described as a brain pathology, there is evidence suggesting that defects in other systems can contribute to disease progression. In line with this, cardiovascular defects are a major cause of death in HD. To date, relatively little is known about the peripheral abnormalities associated with the disease. Here, we applied a range of assays to evaluate cardiac electro‐mechanical properties in vivo, using a previously characterized mouse model of HD (BACHD), and in vitro, using cardiomyocytes isolated from the same mice. We observed conduction disturbances including QT interval prolongation in BACHD mice, indicative of cardiac dysfunction. Cardiomyocytes from these mice demonstrated cellular electro‐mechanical abnormalities, including a prolonged action potential, arrhythmic contractions, and relaxation disturbances. Cellular arrhythmia was accompanied by an increase in calcium waves and increased Ca2+/calmodulin‐dependent protein kinase II activity, suggesting that disruption of calcium homeostasis plays a key part. We also described structural abnormalities in the mitochondria of BACHD‐derived cardiomyocytes, indicative of oxidative stress. Consistent with this, imbalances in superoxide dismutase and glutathione peroxidase activities were detected. Our data provide an in vivo demonstration of cardiac abnormalities in HD together with new insights into the cellular mechanistic basis, providing a possible explanation for the higher cardiovascular risk in HD.
Congenital myasthenic syndromes (CMS) result from reduced cholinergic transmission at neuromuscular junctions (NMJs). While the etiology of CMS varies, the disease is characterized by muscle weakness. To date, it remains unknown if CMS causes long-term and irreversible changes to skeletal muscles. In this study, we examined skeletal muscles in a mouse line with reduced expression of Vesicular Acetylcholine Transporter (VAChT, mouse line herein called VAChT-KD). We examined this mouse line for several reasons. First, VAChT plays a central function in loading acetylcholine (ACh) into synaptic vesicles and releasing it at NMJs, in addition to other cholinergic nerve endings. Second, loss of function mutations in VAChT causes myasthenia in humans. Importantly, VAChT-KD present with reduced ACh and muscle weakness, resembling CMS. We evaluated the morphology, fiber type (myosin heavy chain isoforms), and expression of muscle-related genes in the extensor digitorum longus (EDL) and soleus muscles. This analysis revealed that while muscle fibers atrophy in the EDL, they hypertrophy in the soleus muscle of VAChT-KD mice. Along with these cellular changes, skeletal muscles exhibit altered levels of markers for myogenesis (Pax-7, Myogenin, and MyoD), oxidative metabolism (PGC1-α and MTND1), and protein degradation (Atrogin1 and MuRF1) in VAChT-KD mice. Importantly, we demonstrate that deleterious changes in skeletal muscles and motor deficits can be partially reversed following the administration of the cholinesterase inhibitor, pyridostigmine in VAChT-KD mice. These findings reveal that fast and slow type muscles differentially respond to cholinergic deficits. Additionally, this study shows that the adverse effects of cholinergic transmission, as in the case of CMS, on fast and slow type skeletal muscles are reversible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.