material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This paper presents a finite-element-based computational model to evaluate the thermal behaviour of composite slabs with a steel deck submitted to standard fire exposure. This computational model is used to estimate the temperatures in the slab components that contribute to the fire resistance according to the load-bearing criterion defined in the standards. The numerical results are validated with experimental results, and a parametric study of the effect of the thickness of the concrete on the temperatures of the slab components is presented. Composite slabs with normal or lightweight concrete and different steel deck geometries (trapezoidal and re-entrant) were considered in the simulations. In addition, the numerical temperatures are compared with those obtained using the simplified method provided by the standards. The results of the simulations show that the temperatures predicted by the simplified method led, in most cases, to an unsafe design of the composite slab. Based on the numerical results, a new analytical method, alternative to the simplified method, is defined in order to accurately determine the temperatures at the slab components and, thus, the bending resistance of the composite slabs under fire conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.