In the classic displacer-type liquid level measuring method, liquid level is calculated via the buoyancy force exerted by the liquid on a displacer. This technology has high linearity, precision, accuracy, ease of installation and low cost. Nonetheless, displacer level sensors have significant sensitivity to variations in liquid density, which hinder its use in industrial applications that such quantity is not held constant. In this paper a novel displacer-type liquid level sensor is presented and analyzed. The method consists of adding another displacer and thus calculating the new measured value by the quotient of the buoyancy forces of both displacers. Therefore, the new measurement is ideally insensitive to the variations in liquid density. A prototype was built and prototype results presented high linearity, being able to mitigate the sensitivity to the liquid density, increasing accuracy in the measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.