Implantation and the establishment of pregnancy in mammals involves an intricate interplay of hormones, cytokines, growth factors, proteins, lipids, ions and the extracellular matrix between the uterine epithelium, stroma, immune cells and the conceptus trophectoderm. The divergent nature of implantation in the mouse, human and pig provides not only an interesting contrast in the establishment of pregnancy and early embryonic development but also intriguing similarities with regard to early endometrial-conceptus signaling. An interesting pro-inflammatory cytokine expressed in a number of mammalian species during the period of implantation is interleukin-1β (IL1B). The presence of IL1B might be involved with immunotolerance at the maternal-placental interface and has been proposed as one of the mediators in placental viviparity. The production of IL1B and other proinflammatory cytokines might play a role in establishing pregnancy through modulation of the nuclear factor kappa-B (NFKB) system in a number of species. A model for the regulation of cellular progesterone receptor expression and NFKB activation for endometrial receptivity and conceptus attachment is continuing to evolve and is discussed in the present review.
Immune-compromised mice have been used as gonadal tissue recipients to develop gametes of various mammalian species. The aim of this research was to determine gene expression differences between fresh and frozen-thawed rat xenotransplanted (XT) ovaries as well the gene expression differences between XT and sexually mature rat ovaries that were non-transplanted (NT). Ovaries from sexually immature female rats were transplanted under the kidney capsule of ovariectomized athymic nude mice either fresh or after freezing. The XT ovaries were collected w10-12 weeks after xenografting for microarray analysis. The NT ovaries were collected from sexually mature rats. Gene expression was very similar between fresh and cryopreserved XT ovaries: 125 genes were twofold up-or downregulated, but level of regulation was not statistically significant. Overall patterns of gene expression between XT and NT ovaries were very different indicated by the absence of diagonal relationship between XT and NT ovary gene expression. More than 3000 genes were significantly (P!0.01) up-or downregulated between XT and NT ovaries. Genes involved in metabolic processes, lipid metabolism, and growth were downregulated in XT ovaries, whereas genes involved in immune and inflammatory response were upregulated in XT ovaries. The results showed that ovarian tissue xenografting significantly alters genes responsible for ovarian metabolism and function and leads to an upregulation of genes responsible for graft rejection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.