Somatostatin potently inhibits insulin secretion from pancreatic beta-cells. It does so via activation of ATP-sensitive K+-channels (KATP) and G protein-regulated inwardly rectifying K+-channels, which act to decrease voltage-gated Ca2+-influx, a process central to exocytosis. Because KATP channels, and indeed insulin secretion, is controlled by glucose oxidation, we investigated whether somatostatin inhibits insulin secretion by direct effects on glucose metabolism. Oxidative metabolism in beta-cells was monitored by measuring changes in the O2 consumption (DeltaO2) of isolated mouse islets and MIN6 cells, a murine-derived beta-cell line. In both models, glucose-stimulated DeltaO2, an effect closely associated with inhibition of KATP channel activity and induction of electrical activity (r > 0.98). At 100 nm, somatostatin abolished glucose-stimulated DeltaO2 in mouse islets (n = 5, P < 0.05) and inhibited it by 80 +/- 28% (n = 17, P < 0.01) in MIN6 cells. Removal of extracellular Ca2+, 5 mm Co2+, or 20 microm nifedipine, conditions that inhibit voltage-gated Ca2+ influx, did not mimic but either blocked or reduced the effect of the peptide on DeltaO2. The nutrient secretagogues, methylpyruvate (10 mm) and alpha-ketoisocaproate (20 mm), also stimulated DeltaO2, but this was unaffected by somatostatin. Somatostatin also reversed glucose-induced hyperpolarization of the mitochondrial membrane potential monitored using rhodamine-123. Application of somatostatin receptor selective agonists demonstrated that the peptide worked through activation of the type 5 somatostatin receptor. In conclusion, somatostatin inhibits glucose metabolism in murine beta-cells by an unidentified Ca2+-dependent mechanism. This represents a new signaling pathway by which somatostatin can inhibit cellular functions regulated by glucose metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.