Phospholipid fatty acids (PLFAs) are key components of microbial cell membranes. The analysis of PLFAs extracted from soils can provide information about the overall structure of terrestrial microbial communities. PLFA profiling has been extensively used in a range of ecosystems as a biological index of overall soil quality, and as a quantitative indicator of soil response to land management and other environmental stressors.
Emulating the variability that exists in the natural landscape prior to disturbance should be a goal of soil reconstruction and land reclamation efforts following resource extraction. Long-term ecosystem sustainability within reclaimed landscapes can only be achieved with the re-establishment of biogeochemical processes between reconstructed soils and plants. In this study, we assessed key soil biogeochemical attributes (nutrient availability, organic matter composition, and microbial communities) in reconstructed, novel, anthropogenic ecosystems, covering different reclamation treatments following open-cast mining for oil extraction. We compared the attributes to those present in a range of natural soils representative of mature boreal forest ecosystems in the same area of Northern Alberta. Soil nutrient availability was determined in situ with resin probes, organic matter composition was described with 13C nuclear magnetic resonance spectroscopy and soil microbial community structure was characterized using phospholipid fatty acid analysis. Significant differences among natural ecosystems were apparent in nutrient availability and seemed more related to the dominant tree cover than to soil type. When analyzed together, all natural forests differed significantly from the novel ecosystems, in particular with respect to soil organic matter composition. However, there was some overlap between the reconstructed soils and some of the natural ecosystems in nutrient availability and microbial communities, but not in organic matter characteristics. Hence, our results illustrate the importance of considering the range of natural landscape variability and including several soil biogeochemical attributes when comparing novel, anthropogenic ecosystems to the mature ecosystems that constitute ecological targets
As the focus of soil science education in Canada and elsewhere has shifted towards nonsoil science majors, it is important to understand if and how this has affected the scope of introductory soil science courses. The objectives of this study were to inventory Canadian postsecondary units that offer introductory soil science courses and to document attributes of instructors, students, and teaching approaches in these courses. We surveyed 58% of the instructors of introductory soil science courses across Canada, and most of these courses were offered by geography and environmental science units. The majority of instructors followed a traditional lecture (86%) and laboratory (76%) delivery format, whereas 36% used online teaching resources. Introductory courses were delivered by primarily one instructor, who held a Ph.D. in a tenure track position and in most cases developed the course themselves. Over half of the instructors surveyed used either a required or a recommended textbook, pointing to the need for creation of a Canadian-authored soil science textbook. Several follow-up studies are needed to evaluate teaching methods used in the upper level soil science courses, students' perceptions of teaching in soil science, and instructors' knowledge of resources available for online and (or) blended learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.