Detection of CTCs before initiation of first-line therapy in patients with MBC is highly predictive of PFS and OS. This technology can aid in appropriate patient stratification and design of tailored treatments.
Purpose: The presence of z5 circulating tumor cells (CTC) in 7.5 mL blood from patients with measurable metastatic breast cancer before and/or after initiation of therapy is associated with shorter progression-free and overall survival. In this report, we compared the use of CTCs to radiology for prediction of overall survival. Experimental Design: One hundred thirty-eight metastatic breast cancer patients had imaging studies done before and a median of 10 weeks after the initiation of therapy. All scans were centrally reviewed by two independent radiologists using WHO criteria to determine radiologic response. CTC counts were determined f4 weeks after initiation of therapy. Specimens were analyzed at one of seven laboratories and reviewed by a central laboratory. Results: Interreader variability for radiologic responses and CTC counts were 15.2% and 0.7%, respectively. The median overall survival of 13 (9%) patients with radiologic nonprogression and z5 CTCs was significantly shorter than that of the 83 (60%) patients with radiologic nonprogression and <5 CTCs (15.3 versus 26.9 months; P = 0.0389). The median overall survival of the 20 (14%) patients with radiologic progression and <5 CTCs was significantly longer than the 22 (16%) patients with z5 CTCs that showed progression by radiology (19.9 versus 6.4 months; P = 0.0039). Conclusions: Assessment of CTCs is an earlier, more reproducible indication of disease status than current imaging methods. CTCs may be a superior surrogate end point, as they are highly reproducible and correlate better with overall survival than do changes determined by traditional radiology.
Canadian Institutes of Health Research, Heart and Stroke Foundation of Canada, Ontario Ministry of Health and Long-Term Care, Ontario Ministry of Research, Innovation and Science, UK National Institute of Academic Anaesthesia, UK Clinical Research Collaboration, Australian and New Zealand College of Anaesthetists, and Monash University.
PURPOSE The Adjuvant Paclitaxel and Trastuzumab trial was designed to address treatment of patients with small human epidermal growth factor receptor 2 (HER2)–positive breast cancer. The primary analysis of the Adjuvant Paclitaxel and Trastuzumab trial demonstrated a 3-year disease-free survival (DFS) of 98.7%. In this planned secondary analysis, we report longer-term outcomes and exploratory results to characterize the biology of small HER2-positive tumors and genetic factors that may predispose to paclitaxel-induced peripheral neuropathy (TIPN). PATIENTS AND METHODS In this phase II study, patients with HER2-positive breast cancer with tumors 3 cm or smaller and negative nodes received paclitaxel (80 mg/m2) with trastuzumab for 12 weeks, followed by trastuzumab for 9 months. The primary end point was DFS. Recurrence-free interval (RFI), breast cancer–specific survival, and overall survival (OS) were also analyzed. In an exploratory analysis, intrinsic subtyping by PAM50 (Prosigna) and calculation of the risk of recurrence score were performed on the nCounter analysis system on archival tissue. Genotyping was performed to investigate TIPN. RESULTS A total of 410 patients were enrolled from October 2007 to September 2010. After a median follow-up of 6.5 years, there were 23 DFS events. The 7-year DFS was 93% (95% CI, 90.4 to 96.2) with four (1.0%) distant recurrences, 7-year OS was 95% (95% CI, 92.4 to 97.7), and 7-year RFI was 97.5% (95% CI, 95.9 to 99.1). PAM50 analyses (n = 278) showed that most tumors were HER2-enriched (66%), followed by luminal B (14%), luminal A (13%), and basal-like (8%). Genotyping (n = 230) identified one single-nucleotide polymorphism, rs3012437, associated with an increased risk of TIPN in patients with grade 2 or greater TIPN (10.4%). CONCLUSION With longer follow-up, adjuvant paclitaxel and trastuzumab is associated with excellent long-term outcomes. Distribution of PAM50 intrinsic subtypes in small HER2-positive tumors is similar to that previously reported for larger tumors.
Podocytes are highly differentiated cells that play an important role in maintaining glomerular filtration barrier integrity; a function regulated by small GTPase proteins of the Rho family. To investigate the role of Rho A in podocyte biology, we created transgenic mice expressing doxycycline-inducible constitutively active (V14Rho) or dominant-negative Rho A (N19Rho) in podocytes. Specific induction of either Rho A construct in podocytes caused albuminuria and foot process effacement along with disruption of the actin cytoskeleton as evidenced by decreased expression of the actin associated protein synaptopodin. The mechanisms of these adverse effects, however, appeared to be different. Active V14Rho enhanced actin polymerization, caused a reduction in nephrin mRNA and protein levels, promoted podocyte apoptosis, and decreased endogenous Rho A levels. In contrast, the dominant-negative N19Rho caused a loss of podocyte stress fibers, did not alter the expression of either nephrin or Rho A, and did not cause podocyte apoptosis. Thus, our findings suggest that Rho A plays an important role in maintaining the integrity of the glomerular filtration barrier under basal conditions, but enhancement of Rho A activity above basal levels promotes podocyte injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.