The anticancer activities and SARs of estradiol-17-O-sulfamates and estradiol 3,17-O,O-bis-sulfamates (E2bisMATEs) as steroid sulfatase (STS) inhibitors and antiproliferative agents are discussed. Estradiol 3,17-O,O-bis-sulfamates 20 and 21, in contrast to the 17-O-monosulfamate 11, proved to be excellent STS inhibitors. 2-Substituted E2bisMATEs 21 and 23 additionally exhibited potent antiproliferative activity with mean graph midpoint values of 18-87 nM in the NCI 60-cell-line panel. 21 Exhibited antiangiogenic in vitro and in vivo activity in an early-stage Lewis lung model, and 23 dosed p.o. caused marked growth inhibition in a nude mouse xenograft tumor model. Modeling studies suggest that the E2bisMATEs and 2-MeOE2 share a common mode of binding to tubulin, though COMPARE analysis of activity profiles was negative. 21 was cocrystallized with carbonic anhydrase II, and X-ray crystallography revealed unexpected coordination of the 17-O-sulfamate of 21 to the active site zinc and a probable additional lower affinity binding site. 2-Substituted E2bisMATEs are attractive candidates for further development as multitargeted anticancer agents.
2-Methoxyoestradiol (2-MeOE2) is an endogenous oestrogen metabolite that inhibits the proliferation of cancer cells in vitro, and it is also antiangiogenic. In vivo 2-MeOE2, when administered at relatively high doses, inhibits the growth of tumours derived from breast cancer cells, sarcomas and melanomas. Sulphamoylated derivatives of 2-MeOE2 are more potent inhibitors of in vitro breast cancer cell growth than 2-MeOE2. In the present study, we have compared the pharmacokinetic profiles and metabolism of 2-MeOE2 and its sulphamoylated derivative, 2-methoxyoestradiol-bis-sulphamate (2-MeOE2bisMATE), in adult female rats. Their ability to inhibit tumour growth was compared in nude mice bearing xenografts derived from MDA-MB-435 (oestrogen receptor negative) melanoma cancer cells. After a single oral 10 mg kg À1 dose of 2-MeOE2bisMATE, significant concentrations of this compound were still detectable at 24 h. In contrast, no 2-MeOE2 or metabolites were detected in plasma at any time after a 10 mg kg À1 oral dose. Thus, the bioavailability of 2-MeOE2 is very low, whereas for 2-MeOE2bisMATE it was 85%. No significant metabolites of 2-MeOE2bisMATE were detected in plasma after oral or intravenous dosing, showing that this drug is resistant to metabolism. In the tumour efficacy model, oral administration of 2-MeOE2bisMATE, at 20 mg kg À1 day À1 daily for 28 days, almost completely inhibited tumour growth. Inhibition of tumour growth was maintained for a further 28 days after the cessation of dosing. At this dose level, 2-MeOE2 did not inhibit tumour growth. The resistance to metabolism shown by 2-MeOE2bisMATE and its ability to inhibit tumour growth in vivo suggest that this compound should have considerable potential for development as a novel anticancer drug.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.