Gravitational lensing rotation of images is predicted to be negligible at linear order in density perturbations, but can be produced by the post-Born lens-lens coupling at second order. This rotation is somewhat enhanced for Cosmic Microwave Background (CMB) lensing due to the large source path length, but remains small and very challenging to detect directly by CMB lensing reconstruction alone. We show the rotation may be detectable at high significance as a cross-correlation signal between the curl reconstructed with Simons Observatory (SO) or CMB-S4 data, and a template constructed from quadratic combinations of large-scale structure (LSS) tracers. Equivalently, the lensing rotation-tracer-tracer bispectrum can also be detected, where LSS tracers considered include the CMB lensing convergence, galaxy density, and the Cosmic Infrared Background (CIB), or optimal combinations thereof. We forecast that an optimal combination of these tracers can probe post-Born rotation at the level of 5.7σ-6.1σ with SO and 13.6σ-14.7σ for CMB-S4, depending on whether standard quadratic estimators or maximum a posteriori iterative methods are deployed. We also show possible improvement up to 21.3σ using a CMB-S4 deep patch observation with polarization-only iterative lensing reconstruction. However, these cross-correlation signals have non-zero bias because the rotation template is quadratic in the tracers, and exists even if the lensing is rotation free. We estimate this bias analytically, and test it using simple nullhypothesis simulations to confirm that the bias remains subdominant to the rotation signal of interest. Detection and then measurement of the lensing rotation cross-spectrum is therefore a realistic target for future observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.