Resveratrol (RSV) is reported to extend life span1,2 and provide cardio-neuro-protective3, anti-diabetic4, and anti-cancer effects3,5 by initiating a stress response2 that induces survival genes. Because human tyrosyl tRNA synthetase (TyrRS) translocates to the nucleus under stress conditions6, we considered the possibility that the tyrosine-like phenolic ring of RSV might fit into the active site pocket to effect a nuclear role. Here we present a 2.1Å co-crystal structure of RSV bound to the active site of TyrRS. RSV nullified the catalytic activity and redirected TyrRS to a nuclear function, stimulating NAD+-dependent auto-poly-ADP-ribosylation of PARP-1. Downstream activation of key stress signaling pathways were causally connected to TyrRS-PARP-1-NAD+ collaboration. This collaboration was also demonstrated in the mouse, and was specifically blocked in vivo by a RSV-displacing tyrosyl adenylate analog. In contrast to functionally diverse tRNA synthetase catalytic nulls created by alternative splicing events that ablate active sites7, here a non-spliced TyrRS catalytic null reveals a new PARP-1- and NAD+-dependent dimension to the physiological mechanism of RSV.
HflX is a GTP binding protein of unknown function. Based on the presence of the hflX gene in hflA operon, HflX was believed to be involved in the lytic-lysogenic decision during phage infection in Escherichia coli. We find that E. coli HflX binds 16S and 23S rRNA – the RNA components of 30S and 50S ribosomal subunits. Here, using purified ribosomal subunits, we show that HflX specifically interacts with the 50S. This finding is in line with the homology of HflX to GTPases involved in ribosome biogenesis. However, HflX-50S interaction is not limited to a specific nucleotide-bound state of the protein, and the presence of any of the nucleotides GTP/GDP/ATP/ADP is sufficient. In this respect, HflX is different from other GTPases. While E. coli HflX binds and hydrolyses both ATP and GTP, only the GTP hydrolysis activity is stimulated by 50S binding. This work uncovers interesting attributes of HflX in ribosome binding.
IFN-γ engenders strong anti-proliferative responses, in part through activation of p53. However, the long-known IFN-γ-dependent upregulation of human Trp-tRNA synthetase (TrpRS), a cytoplasmic enzyme that activates tryptophan to form Trp-AMP in the first step of protein synthesis, is unexplained. Here we report a nuclear complex of TrpRS with the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) and with poly (ADP-ribose) polymerase 1 (PARP-1), the major PARP in human cells. The IFN-γ-dependent poly (ADP-ribosyl)ation of DNA-PKcs (which activates its kinase function) and concomitant activation of p53 were specifically prevented by Trp-SA, an analog of Trp-AMP that disrupted the TrpRS/DNA-PKcs/PARP-1 complex. The connection of TrpRS to p53 signaling in vivo was confirmed in a vertebrate system. These and further results suggest a surprising evolutionary expansion of the protein synthesis apparatus to a nuclear role that links major signaling pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.