Most speech enhancement algorithms need an estimate of the noise power spectral density (PSD) to work. In this paper, we introduce a model-based framework for doing noise PSD estimation. The proposed framework allows us to include prior spectral information about the speech and noise sources, can be configured to have zero tracking delay, and does not depend on estimated speech presence probabilities. This is in contrast to other noise PSD estimators which often have a too large tracking delay to give good results in nonstationary situations and offer no consistent way of including prior information about the speech or the noise type. The results show that the proposed method outperforms state-of-the-art noise PSD estimators in terms of tracking speed and estimation accuracy.
Speech intelligibility is often severely degraded among hearing impaired individuals in situations such as the cocktail party scenario. The performance of the current hearing aid technology has been observed to be limited in these scenarios. In this paper, we propose a binaural speech enhancement framework that takes into consideration the speech production model. The enhancement framework proposed here is based on the Kalman filter that allows us to take the speech production dynamics into account during the enhancement process. The usage of a Kalman filter requires the estimation of clean speech and noise short term predictor (STP) parameters, and the clean speech pitch parameters. In this work, a binaural codebookbased method is proposed for estimating the STP parameters, and a directional pitch estimator based on the harmonic model and maximum likelihood principle is used to estimate the pitch parameters. The proposed method for estimating the STP and pitch parameters jointly uses the information from left and right ears, leading to a more robust estimation of the filter parameters. Objective measures such as PESQ and STOI have been used to evaluate the enhancement framework in different acoustic scenarios representative of the cocktail party scenario. We have also conducted subjective listening tests on a set of nine normal hearing subjects, to evaluate the performance in terms of intelligibility and quality improvement. The listening tests show that the proposed algorithm, even with access to only a single channel noisy observation, significantly improves the overall speech quality, and the speech intelligibility by up to 15%.Index Terms-Kalman filter, binaural enhancement, pitch estimation, autoregressive model.
2329-9290 (c)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.