Wind power generation has indicated an exponential increase during last two decades and existing transmission network infrastructure is increasingly becoming inadequate to transmit remotely generated wind power to load centres in the network. The dynamic line rating (DLR) is one of the viable solutions to improve the transmission line ampacity during high wind penetration without investing on an additional transmission network. The main objective of this study is to identify the basic differences between two main line rating standards, since transmission network service providers (TNSPs) heavily depend on these two standards when developing their line rating models. Therefore, a parameter level comparison between two line rating models is a timely requirement, in particular for high wind conditions. Study has shown that roughness factor causes a significant difference between both standards. In particular, the IEEE model indicates more conservative approach due to this parameter. In addition, solar heat-gain calculation has also resulted in significant difference in ampacity ratings between two standards. A case study was developed considering a wind rich network and it has shown that by implementing DLR in wind rich regions, it can effectively reduce line overloading incidents and accommodate wind power flows in the network without any curtailment. Moreover, ability of DLR to reduce network energy losses is also demonstrated and emphasised the importance of selecting suitable DLR candidates to minimise energy losses in the network. © 2013 Elsevier Ltd. All rights reserved. AbstractWind power generation has indicated an exponential increase during last two decades and existing transmission network infrastructure is increasingly becoming inadequate to transmit remotely generated wind power to load centres in the network. The dynamic line rating (DLR) is one of the viable solutions to improve the transmission line ampacity during high wind penetration without investing on an additional transmission network. The main objective of this study is to identify the basic differences between two main line rating standards, since transmission network service providers (TNSPs) heavily depend on these two standards when developing their line rating models. Therefore, a parameter level comparison between two line rating models is a timely requirement, in particular for high wind conditions. Study has shown that roughness factor causes a significant difference between both standards. In particular, the IEEE model indicates more conservative approach due to this parameter. In addition, solar heatgain calculation has also resulted in significant difference in ampacity ratings between two standards. A case study was developed considering a wind rich network and it has shown that by implementing DLR in wind rich regions, it can effectively reduce line overloading incidents and accommodate wind power flows in the network without any curtailment. Moreover, ability of DLR to reduce network energy losses is also demonstrated ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.