This protocol describes regular care and maintenance of a zebrafish laboratory. Zebrafish are now gaining popularity in genetics, pharmacological and behavioural research. As a vertebrate, zebrafish share considerable genetic sequence similarity with humans and are being used as an animal model for various human disease conditions. The advantages of zebrafish in comparison to other common vertebrate models include high fecundity, low maintenance cost, transparent embryos, and rapid development. Due to the spur of interest in zebrafish research, the need to establish and maintain a productive zebrafish housing facility is also increasing. Although literature is available for the maintenance of a zebrafish laboratory, a concise video protocol is lacking. This video illustrates the protocol for regular housing, feeding, breeding and raising of zebrafish larvae. This process will help researchers to understand the natural behaviour and optimal conditions of zebrafish husbandry and hence troubleshoot experimental issues that originate from the fish husbandry conditions. This protocol will be of immense help to researchers planning to establish a zebrafish laboratory, and also to graduate students who are intending to use zebrafish as an animal model. Video LinkThe video component of this article can be found at https://www.jove.com/video/4196/ Protocol 1. System Maintenance 1. Zebrafish are kept in a circulating system that continuously filters and aerates the system water to maintain the water quality required for a healthy aquatic environment. The circulating system also helps to filter excess food and fish excreta. Different companies provide zebrafish systems but we use systems from Aquatic Habitats, USA in our laboratory. The room temperature or the tank temperature is generally maintained between 26-28.5 °C and the lighting conditions are 14:10 hr (light: dark). A zebrafish system from Aquatic Habitats (e.g., Benchtop system) costs ~9,000 USD. This benchtop system with two shelves can hold six 10-liter, twelve 3-liter, or twenty 1.5-liter tanks on each shelf. Multiple lines of fish (e.g., transgenic, mutant, wild type) can also be housed on the same system. 2. A set of different kinds of filters are used in the system. In our system, water from all the tanks passes through a 120-micron filter pad, 50-micron canister filter, biological filter , active carbon absorption filter and UV disinfection filter before being circulated back into the tank. Dechlorinated/aged water is used in the zebrafish system. Water can be de-chlorinated by ageing for at least 48 hr. Under ideal conditions, water should be kept in a reservoir with a pump circulating the water to keep it warm, and expedite the de-chlorination. 3. The pH of the system water should be checked daily and maintained between 6.8 and 7.5. When necessary, sodium bicarbonate should be used to increase the pH. 4. Fish tanks should be cleaned regularly. To clean a fish tank, close the water flow to this tank, drain excess water by tilting the tank backwards...
There is growing interest in using zebrafish (Danio rerio) as a model of neurodegenerative disorders such as Alzheimer's disease. A zebrafish model of tauopathies has recently been developed and characterized in terms of presence of the pathological hallmarks (i.e., neurofibrillary tangles and cell death). However, it is also necessary to validate these models for function by assessing learning and memory. The majority of tools to assess memory and learning in animal models involve visual stimuli, including color preference. The color preference of zebrafish has received little attention. To validate zebrafish as a model for color-associated-learning and memory, it is necessary to evaluate its natural preferences or any pre-existing biases towards specific colors. In the present study, we have used four different colors (red, yellow, green, and blue) to test natural color preferences of the zebrafish using two procedures: Place preference and T-maze. Results from both experiments indicate a strong aversion toward blue color relative to all other colors (red, yellow, and green) when tested in combinations. No preferences or biases were found among reds, yellows, and greens in the place preference procedure. However, red and green were equally preferred and both were preferred over yellow by zebrafish in the T-maze procedure. The results from the present study show a strong aversion towards blue color compared to red, green, and yellow, with yellow being less preferred relative to red and green. The findings from this study may underpin any further designing of color-based learning and memory paradigms or experiments involving aversion, anxiety, or fear in the zebrafish.
To investigate behavioral and neurochemical effects of neurotrophic factors in vivo, rats received continuous 14 d infusions of either brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), or vehicle unilaterally into the substantia nigra. BDNF and NT-3 decreased body weights, an effect that was sustained over the infusion period. BDNF elevated daytime and nocturnal locomotion compared with infusions of vehicle or NT-3. At 2 weeks, a systemic injection of amphetamine (1.5 mg/kg, s.c.) increased the frequencies and durations of rotations contraversive to the side of BDNF and NT-3 infusions. Both factors attenuated amphetamine-induced locomotion without affecting amphetamine- induced stereotyped behaviors such as sniffing, head movements, and snout contact with cage surfaces. Only BDNF induced backward walking, and this response was augmented by amphetamine. BDNF, but not NT-3, increased dopamine turnover in the striatum ipsilateral to the infusion relative to the contralateral striatum. Both trophic factors decreased dopamine turnover in the infused substantia nigra relative to the contralateral hemisphere and increased 5-HT turnover in the striatum of both sides. Contraversive rotations were positively correlated with dopamine content decreases and 5-HT turnover increases in the striatum ipsilateral to the infused substantia nigra. Backward walking was positively correlated with increased dopamine and 5-HT turnover in the striatum of the infused hemisphere. Supranigral infusions of BDNF and NT-3 alter circadian rhythms, spontaneous motor activity, body weights, and amphetamine-induced behaviors including locomotion and contraversive rotations. These behavioral effects of the neurotrophins are consistent with a concomitant activation of dopamine and 5-HT systems in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.