We present the second major release of data from the SAMI Galaxy Survey. Data Release Two includes data for 1559 galaxies, about 50% of the full survey. Galaxies included have a redshift range 0.004 < z < 0.113 and a large stellar mass range 7.5 < log(M /M ) < 11.6. The core data for each galaxy consist of two primary spectral cubes covering the blue and red optical wavelength ranges. For each primary cube we also provide three spatially binned spectral cubes and a set of standardised aperture spectra. For each core data product we provide a set of value-added data products. This includes all emission line value-added products from Data Release One, expanded to the larger sample. In addition we include stellar kinematic and stellar population value-added products derived from absorption line measurements. The data are provided online through Australian Astronomical Optics' Data Central. We illustrate the potential of this release by presenting the distribution of ∼ 350, 000 stellar velocity dispersion measurements from individual spaxels as a function of R/R e , divided in four galaxy mass bins. In the highest stellar mass bin (log(M /M ) > 11), the velocity dispersion strongly increases towards the centre, whereas below log(M /M ) < 10 we find no evidence for a clear increase in the central velocity dispersion. This suggests a transition mass around log(M /M ) ∼ 10 for galaxies with or without a dispersion-dominated bulge.
We have used integral field spectroscopy of a sample of six nearby (z ∼ 0.01-0.04) high star-formation rate (SFR ∼ 10-40 M yr −1 ) galaxies to investigate the relationship between local velocity dispersion and star-formation rate on sub-galactic scales. The low-redshift mitigates, to some extent, the effect of beam smearing which artificially inflates the measured dispersion as it combines regions with different line-of-sight velocities into a single spatial pixel. We compare the parametric maps of the velocity dispersion with the Hα flux (a proxy for local star-formation rate), and the velocity gradient (a proxy for the local effect of beam smearing). We find, even for these very nearby galaxies, the Hα velocity dispersion correlates more strongly with velocity gradient than with Hα flux-implying that beam smearing is still having a significant effect on the velocity dispersion measurements. We obtain a first-order non parametric correction for the unweighted and flux weighted mean velocity dispersion by fitting a 2D linear regression model to the spaxel-byspaxel data where the velocity gradient and the Hα flux are the independent variables and the velocity dispersion is the dependent variable; and then extrapolating to zero velocity gradient. The corrected velocity dispersions are a factor of ∼1.3-4.5 and ∼1.3-2.7 lower than the uncorrected flux-weighted and unweighted mean line-of-sight velocity dispersion values, respectively. These corrections are larger than has been previously cited using disc models of the velocity and velocity dispersion field to correct for beam smearing. The corrected flux-weighted velocity dispersion values are σ m ∼ 20-50 km s −1 .
We infer the intrinsic ionized gas kinematics for 383 star-forming galaxies across a range of integrated star formation rates (SFR ∈ [10−3, 102] M⊙ yr−1) at z ≲ 0.1 using a consistent 3D forward-modelling technique. The total sample is a combination of galaxies from the Sydney-AAO Multiobject Integral field Spectrograph (SAMI) Galaxy survey and DYnamics of Newly Assembled Massive Objects survey. For typical low-z galaxies taken from the SAMI Galaxy Survey, we find the vertical velocity dispersion (σv,z) to be positively correlated with measures of SFR, stellar mass, H i gas mass, and rotational velocity. The greatest correlation is with SFR surface density (ΣSFR). Using the total sample, we find σv,z increases slowly as a function of integrated SFR in the range SFR ∈ [10−3, 1] M⊙ yr−1 from 17 ± 3 to 24 ± 5 km s−1 followed by a steeper increase up to σv,z ∼80 km s−1 for SFR ≳ 1 M⊙ yr−1. This is consistent with recent theoretical models that suggest a σv,z floor driven by star formation feedback processes with an upturn in σv,z at higher SFR driven by gravitational transport of gas through the disc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.