We present a comprehensive analysis of transport processes associated with electrohydrodynamic chaos in electrokinetic systems containing an ion-selective surface. The system considered is an aqueous symmetric binary electrolyte between an ion-selective surface and a stationary reservoir. Transport is driven by an external electric field. Using direct numerical simulations (DNS) of the coupled Poisson–Nernst–Planck and Navier–Stokes equations in 2D we show significant transitions in flow behavior from coherent vortex pairs to fully chaotic multi-layer vortex structures with a broadband energy spectrum. Additionally, we demonstrate that these vortices can eject both positive and negative free charge density into the bulk of the domain and completely disrupt the structure of the traditionally described extended space charge region. The resulting dynamical behavior poses a challenge for traditional asymptotic modeling that relies on the quasi-electroneutral bulk assumption. Furthermore, we quantify for the first time the relative importance of energy dissipation due to viscous effects in various transport regimes. Finally, we present a framework for the development of ensemble-averaged models (similar to Reynolds Averaged Navier–Stokes equations) and assess the importance of the unclosed terms based on our DNS data.
Possible mechanisms for over-limiting current (OLC) through aqueous ion-exchange membranes (exceeding diffusion limitation) have been debated for half a century. Flows consistent with electroosmotic instability (EOI) have recently been observed in microfluidic experiments, but the existing theory neglects chemical effects and remains to be quantitatively tested. Here, we show that charge regulation and water self-ionization can lead to OLC by "current-induced membrane discharge" (CIMD), even in the absence of fluid flow. Salt depletion leads to a large electric field which expels water co-ions, causing the membrane to discharge and lose its selectivity. Since salt co-ions and water ions contribute to OLC, CIMD interferes with electrodialysis (salt counter-ion removal) but could be exploited for current-assisted ion exchange and pH control. CIMD also suppresses the extended space charge that leads to EOI, so it should be reconsidered in both models and experiments on OLC.
We present direct numerical simulations of the coupled Poisson-Nernst-Planck and Navier-Stokes equations for an electrolyte around a polarizable cylinder subject to an external electric field. For high fields, a novel chaotic flow phenomenon is discovered. Our calculations indicate significant improvement in the prediction of the mean flow relative to standard asymptotic models. These results open possibilities for chaos-enhanced mixing in microdevices and provide insight into barriers to efficient electrokinetic micropumps with broad applications in electrochemical and lab-on-a-chip systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.