A deeper understanding of COVID‐19 on human molecular pathophysiology is urgently needed as a foundation for the discovery of new biomarkers and therapeutic targets. Here we applied mass spectrometry (MS)‐based proteomics to measure serum proteomes of COVID‐19 patients and symptomatic, but PCR‐negative controls, in a time‐resolved manner. In 262 controls and 458 longitudinal samples of 31 patients, hospitalized for COVID‐19, a remarkable 26% of proteins changed significantly. Bioinformatics analyses revealed co‐regulated groups and shared biological functions. Proteins of the innate immune system such as CRP, SAA1, CD14, LBP, and LGALS3BP decreased early in the time course. Regulators of coagulation (APOH, FN1, HRG, KNG1, PLG) and lipid homeostasis (APOA1, APOC1, APOC2, APOC3, PON1) increased over the course of the disease. A global correlation map provides a system‐wide functional association between proteins, biological processes, and clinical chemistry parameters. Importantly, five SARS‐CoV‐2 immunoassays against antibodies revealed excellent correlations with an extensive range of immunoglobulin regions, which were quantified by MS‐based proteomics. The high‐resolution profile of all immunoglobulin regions showed individual‐specific differences and commonalities of potential pathophysiological relevance.
Background-The aim of this prospective, randomized study was to examine whether additional school exercise lessons would result in improved peak oxygen uptake (primary end point) and body mass index-standard deviation score, motor and coordinative abilities, circulating progenitor cells, and high-density lipoprotein cholesterol (major secondary end points). Methods and Results-Seven sixth-grade classes (182 children, aged 11.1Ϯ0.7 years) were randomized to an intervention group (4 classes with 109 students) with daily school exercise lessons for 1 year and a control group (3 classes with 73 students) with regular school sports twice weekly. The significant effects of intervention estimated from ANCOVA adjusted for intraclass correlation were the following: increase of peak V O 2 (3.7 mL/kg per minute; 95% confidence interval, 0.3 to 7.2) and increase of circulating progenitor cells evaluated by flow cytometry (97 cells per 1ϫ10
To the best of our knowledge, this is the most comprehensive side-by-side comparison of five current top of the range routine hematology analyzers. Variable analyzer quality and parameter specific limitations must be considered in defining laboratory algorithms in clinical practice.
Background—
Coronary artery bypass grafting (CABG) using cardiopulmonary bypass (CPB) provides controlled operative conditions but induces a whole-body inflammatory response capable of initiating devastating morbidity and mortality. Although technically more demanding, deliberate avoidance of CPB in off-pump surgery attenuates the physiological insult associated with CABG.
Methods and Results—
To systematically assess the molecular mechanisms underlying the better-preserved remote organ function, we studied gene expression patterns in leukocytes and plasma proteomic response to on-pump and off-pump CABG. Proteomic analysis confirmed (tumor necrosis factor-α, interleukin [IL]-6, IL-10) and expanded (eg, interferon [IFN]-γ, granulocyte colony–stimulating factor [G-CSF], monocyte chemotactic protein-1, macrophage inflammatory protein-1β) the mediators released on CPB, whereas blood leukocyte transcriptomics suggested that circulating leukocytes are not primarily responsible for this response. Interestingly, release of some cytokines (eg, IL-6, IFN-γ, G-CSF) was observed on off-pump surgery to a similar extent but with delayed kinetics. A total of 45 of 4868 transcripts were identified to be significantly altered as a result of initiation of CPB. Systematic analysis of transcriptional activation by CPB revealed primarily genes involved in inflammation-related cell–cell communication (such as L-selectin or intercellular adhesion molecule-2) and signaling (such as IL-1, IL-8, or IL-18 receptors and toll-like receptors 4, 5, and 6), thus confirming a “primed” phenotype of circulating peripheral blood mononuclear cells.
Conclusions—
Gene array and multiplex protein analysis, only in concert, can illuminate the molecular mechanisms responsible for systemic sequelae of CPB and indicate that circulating leukocytes overexpress adhesion and signaling factors after contact with CPB, which potentially facilitates their trapping, eg, in the lungs and may promote a subsequent tissue-associated inflammatory response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.