Abstract. When flux enhancements of energetic electrons are produced as a consequence of geomagnetic storm occurrence, they tend to vanish gradually when the magnetic activity calms down and the fluxes decay to quiet-time levels. We use SAC-C and DEMETER low altitude observations to estimate the energetic electron lifetimes (E=0.16-1.4 MeV, L=1.6-5, B=0.22-0.46 G) and compare the decay rates to those observed at high altitude. While crossing the radiation belts at high latitude, the SAC-C and DEMETER instruments sample particles with small equatorial pitch angles (α eq < 18 • for L > 2.5) whereas the comparison is done with other satellite data measured mainly in the equatorial plane (for α eq > 75 • ). While in the inner belt and in the slot region no significant lifetime differences are observed from the data sets with different α eq , in the outer belt, for the least energetic electrons (<500 keV), the lifetimes are up to ∼3 times larger for the electrons with the equatorial pitch-angle close to the loss cone than for those mirroring near the equator. The difference decreases with increasing energy and vanishes for energies of about 1 MeV.
Solar energetic particles are one of the main sources of particle radiation seen in space. In the first part of September 2017 the most active solar period of cycle 24 produced four large X-class flares and a series of (interplanetary) coronal mass ejections, which gave rise to radiation storms seen over all energies and at the ground by neutron monitors. This paper presents comprehensive cross comparisons of in situ radiation detector data from near-Earth satellites to give an appraisal on the state of present data processing for monitors of such particles. Many of these data sets have been the target of previous cross calibrations, and this event with a hard spectrum provides the opportunity to validate these results. As a result of the excellent agreement found between these data sets and the use of neutron monitor data, this paper also presents an analytical expression for fluence spectrum for the event. Derived ionizing dose values have been computed to show that although there is a significant high-energy component, the event was not particularly concerning as regards dose effects in spacecraft electronics. Several sets of spacecraft data illustrating single event effects are presented showing a more significant impact in this regard. Such a hard event can penetrate thick shielding; human dose quantities measured inside the International Space Station and derived through modeling for aircraft altitudes are also presented. Lastly, simulation results of coronal mass ejection propagation through the heliosphere are presented along with data from Mars-orbiting spacecraft in addition to data from the Mars surface.
The Mobile Radiation Exposure Control System's (Liulin-4 type) main purpose is to monitor simultaneously the doses and fluxes at 4 independent places. It can also be used for personnel dosimetry. The system consists of 4 battery-operated 256-channel dosimeters-spectrometers. We describe results obtained during the calibrations of the spectrometers at the Cyclotron facilities of the University of Louvain, Belgium and of the National Institute of Radiological Sciences-STA, Chiba, Japan with protons of energies up to 70 MeV. The angular sensitivities of the devices are studied and compared with MonteCarlo predictions. We also present the results obtained at the HIMAC accelerator with 500 MeV/u Fe ions and at the CERN high energy radiation reference fields. Records made during airplane flights are shown and compared with the predictions of the CARI-6 model.
The Energetic Particle Telescope (EPT) is a new compact and modular ionizing particle spectrometer that was launched on 7 May 2013 to a LEO polar orbit at an altitude of 820 km onboard the ESA satellite PROBA-V. First results show electron, proton and helium ion fluxes in the South Atlantic Anomaly (SAA) and at high latitudes, with high flux increases during SEP (Solar Energetic Particles) events and geomagnetic storms. These observations help to improve the understanding of generation and loss processes associated to the Van Allen radiation belts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.