The dependency of our society on networked computers has become frightening: In the economy, all-digital networks have turned from facilitators to drivers; as cyber-physical systems are coming of age, computer networks are now becoming the central nervous systems of our physical world-even of highly critical infrastructures such as the power grid. At the same time, the 24/7 availability and correct functioning of networked computers has become much more threatened: The number of sophisticated and highly tailored attacks on IT systems has significantly increased. Intrusion Detection Systems (IDSs) are a key component of the corresponding defense measures; they have been extensively studied and utilized in the past. Since conventional IDSs are not scalable to big company networks and beyond, nor to massively parallel attacks, Collaborative IDSs (CIDSs) have emerged. They consist of several monitoring components that collect and exchange data. Depending on the specific CIDS architecture, central or distributed analysis components mine the gathered data to identify attacks. Resulting alerts are correlated among multiple monitors in order to create a holistic view of the network monitored. This article first determines relevant requirements for CIDSs; it then differentiates distinct building blocks as a basis for introducing a CIDS design space and for discussing it with respect to requirements. Based on this design space, attacks that evade CIDSs and attacks on the availability of the CIDSs themselves are discussed. The entire framework of requirements, building blocks, and attacks as introduced is then used for a comprehensive analysis of the state of the art in collaborative intrusion detection, including a detailed survey and comparison of specific CIDS approaches.
User tracking on the Internet can come in various forms, e.g., via cookies or by fingerprinting web browsers. A technique that got less attention so far is user tracking based on TLS and specifically based on the TLS session resumption mechanism. To the best of our knowledge, we are the first that investigate the applicability of TLS session resumption for user tracking. For that, we evaluated the configuration of 48 popular browsers and one million of the most popular websites. Moreover, we present a so-called prolongation attack, which allows extending the tracking period beyond the lifetime of the session resumption mechanism. To show that under the observed browser configurations tracking via TLS session resumptions is feasible, we also looked into DNS data to understand the longest consecutive tracking period for a user by a particular website. Our results indicate that with the standard setting of the session resumption lifetime in many current browsers, the average user can be tracked for up to eight days. With a session resumption lifetime of seven days, as recommended upper limit in the draft for TLS version 1.3, 65% of all users in our dataset can be tracked permanently.
We show that heat transfer in microchannels can be considerably augmented by introducing droplets or slugs of an immiscible liquid into the main fluid flow. We numerically investigate the influence of differently shaped colloidal or simply pure immiscible droplets to the main liquid flow on the thermal transport in microchannels. Results of parametric studies on the influence of all major factors connected to microchannel heat transfer are presented. The effect of induced Marangoni flow at the liquid interfaces is also taken into account and quantified. The calculation of the multiphase, multispecies flow problem is performed, applying a front tracking method, extended to account for nanoparticle transport in the suspended phase when relevant. This study reveals that the use of a second suspended liquid (with or without nanoparticles) is an efficient way to significantly increase the thermal performance without unacceptably large pressure losses. In the case of slug-train coflow, the Nusselt number can be increased by as much as 400% compared with single liquid flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.