A series of crystalline sp -sp diboron(4) compounds were synthesized and shown to promote the facile reduction of water with dihydrogen formation. The application of these diborons as simple and effective dihydrogen and dideuterium sources was demonstrated by conducting a series of selective reductions of alkynes and alkenes, and hydrogen-deuterium exchange reactions using two-chamber reactors. Finally, as the water reduction reaction generates an intermediate borohydride species, a range of aldehydes and ketones were reduced by using water as the hydride source.
Aseries of crystalline sp 3 -sp 3 diboron(4) compounds were synthesized and shown to promote the facile reduction of water with dihydrogen formation. The application of these diborons as simple and effective dihydrogen and dideuterium sources was demonstrated by conducting as eries of selective reductions of alkynes and alkenes,a nd hydrogen-deuterium exchange reactions using two-chamber reactors.Finally,asthe water reduction reaction generates an intermediate borohydride species,arange of aldehydes and ketones were reduced by using water as the hydride source.
Three disilanes, (CH3)3SiSi(CH3)3, Cl(CH3)2SiSi(CH3)2Cl, and Cl2(CH3)SiSi(CH3)Cl2, all representing components of the Direct Process residue for the industrial synthesis of chloromethylsilanes, were evaluated for their abilities to reduce carbon dioxide to carbon monoxide upon treatment with fluoride salts. In particular, Cl(CH3)2SiSi(CH3)2Cl proved to be highly efficient upon the use of stoichiometric amounts of potassium bifluoride. DFT calculations performed on the reduction steps with (CH3)3SiSi(CH3)3 and fluorinated analogues of this disilane suggest that the previously proposed pathway involving an intermediate silacarboxylic acid is plausible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.