Detergent-soluble membrane vesicles are actively released by human pancreas (ColoÀ/Colo+) and colon (CXÀ/CX+) carcinoma sublines, differing in their capacity to present heat shock protein 70 (Hsp70)/Bag-4 on their plasma membranes. Floating properties, acetylcholine esterase activity, and protein composition characterized them as exosomes. An enrichment of Rab-4 documented their intracellular transport route from early endosomes to the plasma membrane. After solubilization, comparable amounts of cytosolic proteins, including tubulin, Hsp70, Hsc70, and Bag-4, but not ERresiding Grp94 and calnexin, were detectable in tumorderived exosomes. However, with respect to the exosomal surface, only Colo+/CX+ but not ColoÀ/CXÀ derived exosomes were Hsp70 membrane positive. Therefore, concomitant with an up-regulated cell surface density of activation markers, migration and Hsp70 reactivity of natural killer (NK) cells was stimulated selectively by Hsp70/Bag-4 surface-positive exosomes, but not by their negative counterparts and tumor cell lysates. Moreover, the exosome-mediated lytic activity of NK cells was blockable by Hsp70-specific antibody. As already shown for TKD stimulation, NK cells preincubated with Hsp70 surface-positive exosomes initiated apoptosis in tumors through granzyme B release. In summary, our data provide an explanation how Hsp70 reactivity in NK cells is induced by tumor-derived exosomes. (Cancer Res 2005; 65(12): 5238-47)
Stress or heat shock proteins (HSPs) are the most conserved proteins present in both prokaryotes and eukaryotes. Their expression is induced in response to a wide variety of physiological and environmental insults. These proteins play an essential role as molecular chaperones by assisting the correct folding of nascent and stress-accumulated misfolded proteins, and preventing their aggregation. HSPs have a dual function depending on their intracellular or extracellular location. Intracellular HSPs have a protective function. They allow the cells to survive lethal conditions. Various mechanisms have been proposed to account for the cytoprotective functions of HSPs. Several HSPs have also been demonstrated to directly interact with various components of the tightly regulated programmed cell death machinery, upstream and downstream of the mitochondrial events. On the other hand, extracellular located or membrane-bound HSPs mediate immunological functions. They can elicit an immune response modulated either by the adaptive or innate immune system. This review will focus on HSP27, HSP70, and HSP90. We will discuss the dual role of these HSPs, protective vs. immunogenic properties, making a special emphasis in their utility as targets in cancer therapy.
Heat shock proteins (hsps) are intracellular chaperones that play a key role in the recovery from stress. Hsp70, the major stress-induced hsp, has been found in the extracellular medium and is capable of activating immune cells. The mechanism involved in Hsp70 release is controversial because this protein does not present a consensual secretory signal. In this study, we have shown that Hsp70 integrates into artificial lipid bilayer openings of ion conductance pathways. In addition, this protein was found inserted into the plasma membrane of cells after stress. Hsp70 was released into the extracellular environment in a membrane-associated form, sharing the characteristics of this protein in the plasma membrane. Extracellular membranes containing Hsp70 were at least 260-fold more effective than free recombinant protein in inducing TNF-α production as an indicator of macrophage activation. These observations suggest that Hsp70 translocates into the plasma membrane after stress and is released within membranous structures from intact cells, which could act as a danger signal to activate the immune system.
Immunization of mice with a 14-mer peptide TKDNNLLGRFELSG, termed "TKD," comprising amino acids 450-461 (aa [450][451][452][453][454][455][456][457][458][459][460][461] ) in the C terminus of inducible Hsp70, resulted in the generation of an IgG1 mouse mAb cmHsp70.1. The epitope recognized by cmHsp70.1 mAb, which has been confirmed to be located in the TKD sequence by SPOT analysis, is frequently detectable on the cell surface of human and mouse tumors, but not on isogenic cells and normal tissues, and membrane Hsp70 might thus serve as a tumor-specific target structure. As shown for human tumors, Hsp70 is associated with cholesterol-rich microdomains in the plasma membrane of mouse tumors. Herein, we show that the cmHsp70.1 mAb can selectively induce antibody-dependent cellular cytotoxicity (ADCC) of membrane Hsp70 + mouse tumor cells by unstimulated mouse spleen cells. Tumor killing could be further enhanced by activating the effector cells with TKD and IL-2. Three consecutive injections of the cmHsp70.1 mAb into mice bearing CT26 tumors significantly inhibited tumor growth and enhanced the overall survival. These effects were associated with infiltrations of NK cells, macrophages, and granulocytes. The Hsp70 specificity of the ADCC response was confirmed by preventing the antitumor response in tumor-bearing mice by coinjecting the cognate TKD peptide with the cmHsp70.1 mAb, and by blocking the binding of cmHsp70.1 mAb to CT26 tumor cells using either TKD peptide or the C-terminal substrate-binding domain of Hsp70.immunotherapy | syngeneic tumor model | tumor antibody dependent cellular cytotoxicity | epitope mapping | surface antigen
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.