A new setup combining a ThermoFisher Exactive Plus Orbitrap Mass Spectrometer with a liquid injection field desorption ionization (LIFDI) source directly connected to an inert atmosphere glovebox is presented. The...
Field ionization (FI), field desorption (FD), and liquid injection field desorption/ionization (LIFDI) provide soft positive ionization of gaseous (FI) or condensed phase analytes (FD and LIFDI). In contrast to the well-established positive-ion mode, negative-ion FI or FD have remained rare exceptions. LIFDI provides sample deposition under inert conditions, i.e., the exclusion of atmospheric oxygen and water. Thus, negative-ion LIFDI could potentially be applied to highly sensitive anionic compounds like catalytically active transition metal complexes. This work explores the potential of negative-ion mode using modern mass spectrometers in combination with an LIFDI source and presents first results of the application of negative-ion LIFDI-MS. Experiments were performed on two orthogonal-acceleration time-of-flight (oaTOF) instruments, a JEOL AccuTOF GCx and a Waters Micromass Q-TOF Premier equipped with LIFDI sources from Linden CMS. The examples presented include four ionic liquids (ILs), i.e., N-butyl-3-methylpyridinium dicyanamide, 1-butyl-3-methylimidazolium tricyanomethide, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, and trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate), 3-(trifluoromethyl)-phenol, dichloromethane, iodine, polyethylene glycol diacid, perfluorononanoic acid, anionic surfactants, a tetraphosphazene silanol-silanolate, and two bis(catecholato)silanes. Volatile samples were delivered as vapors via the sample transfer capillary of the LIFDI probe or via a reservoir inlet. Condensed phase samples were applied to the emitter as dilute solutions via the sample transfer capillary. The compounds either yielded ions corresponding to their intact anions, A−, or the [M–H]− species formed upon deprotonation. This study describes the instrumental setups and the operational parameters for robust operation along with a discussion of the negative-ion LIFDI spectra of a variety of compounds.
The synthesis of stable triacylgermenolates 3 a,b was achieved by using a multiple silyl abstraction methodology. The formation of these new germenolates was confirmed by NMR spectroscopy and UV‐Vis measurements. Moreover, for the triacylgermenolates 2 and 3 a LIFDI mass spectrometry to characterize these new compounds. Germenolates 3 a,b serve as a starting point for a new triaacylgermane 4 a and two octaacyldigermanes 4 c,d. The formation of these acylgermanes was confirmed by NMR spectroscopy, X‐ray crystallography, UV‐Vis measurements and mass spectrometry. The UV‐Vis absorption spectra of 4 c,d show considerably increased band intensities due to the presence of eight chromophores.
Liquid injection field desorption ionization (LIFDI) proves the extraordinary softness of the ionization process combined with a convenient sample supply under the exclusion of moisture and air. LIFDI–mass spectrometry (MS) is used for organometallic and other seriously air-sensitive compounds forming intact ions without substantial fragmentation. Unprecedented molecular radical anions M–• are presented along with well-known intact M+• radical cations. Furthermore closed shell cations [C]+ and adduct ions like [M + H]+ or [M + Alkali]+ are gently transferred from the solid emitter surface into the gas phase. Anions [A]– or [M − H]– are accessible by LIFDI–MS at medium field strengths. Ion pairs [C]+[A]– are separately detected by positive and negative mode LIFDI–MS, respectively. Here we give an overview of the different ion types accessible by LIFDI–MS. For the first time the field ionization/desorption of solar cell electron acceptor compounds is shown to deliver M–• and M2–• radical ions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.