Abstract. The late Paleocene is characterized by warm and stable climatic conditions that served as the background climate for the Paleocene-Eocene Thermal Maximum (PETM, ∼ 55 million years ago). With respect to feedback processes in the carbon cycle, the ocean biogeochemical background state is of major importance for projecting the climatic response to a carbon perturbation related to the PETM. Therefore, we use the Hamburg Ocean Carbon Cycle model (HAMOCC), embedded in the ocean general circulation model of the Max Planck Institute for Meteorology, MPIOM, to constrain the ocean biogeochemistry of the late Paleocene. We focus on the evaluation of modeled spatial and vertical distributions of the ocean carbon cycle parameters in a longterm warm steady-state ocean, based on a 560 ppm CO 2 atmosphere. Model results are discussed in the context of available proxy data and simulations of pre-industrial conditions. Our results illustrate that ocean biogeochemistry is shaped by the warm and sluggish ocean state of the late Paleocene. Primary production is slightly reduced in comparison to the present day; it is intensified along the Equator, especially in the Atlantic. This enhances remineralization of organic matter, resulting in strong oxygen minimum zones and CaCO 3 dissolution in intermediate waters. We show that an equilibrium CO 2 exchange without increasing total alkalinity concentrations above today's values is achieved. However, consistent with the higher atmospheric CO 2 , the surface ocean pH and the saturation state with respect to CaCO 3 are lower than today. Our results indicate that, under such conditions, the surface ocean carbonate chemistry is expected to be more sensitive to a carbon perturbation (i.e., the PETM) due to lower CO 2− 3 concentration, whereas the deep ocean calcite sediments would be less vulnerable to dissolution due to the vertically stratified ocean.
The Paleocene‐Eocene Thermal Maximum was a transient, carbon‐induced global warming event, considered the closest analog to ongoing climate change. Impacts of a decrease in deepwater formation during the onset of the Paleocene‐Eocene Thermal Maximum suggested by proxy data on the carbon cycle are not yet fully understood. Using an Earth System Model, we find that changes in overturning circulation are key to reproduce the deoxygenation and carbonate dissolution record. Weakening of the Southern Ocean deepwater formation and enhancement of ocean stratification driven by warming cause an asymmetry in carbonate dissolution between the Atlantic and Pacific basins suggested by proxy data. Reduced ventilation results in accumulation of remineralization products (CO2 and nutrients) in intermediate waters, thereby lowering O2 and increasing CO2. As a result, carbonate dissolution is triggered throughout the water column, while the ocean surface remains supersaturated. Our findings contribute to understanding of the long‐term response of the carbon cycle to climate change.
Abstract. The Late Paleocene is characterized by warm and stable climatic conditions which served as the background climate for the Paleocene-Eocene Thermal Maximum (PETM, ~55 million years ago). With respect to feedback processes in the carbon cycle, the ocean biogeochemical background state is of major importance for projecting the climatic response to a carbon perturbation related to the PETM. Therefore we use the Hamburg Ocean Carbon Cycle model HAMOCC, embedded into the ocean general circulation model of the Max Planck Institute for Meteorology, MPIOM, to constrain the ocean biogeochemistry of the Late Paleocene. We focus on the evaluation of modeled spatial and vertical distributions of the ocean carbon cycle parameters in a long-term warm steady-state ocean, based on a 560 ppm CO2 atmosphere. Model results are discussed in the context of available proxy data and simulations of pre-industrial conditions. Our results illustrate that ocean biogeochemistry is shaped by the warm and sluggish ocean state of the Late Paleocene, which affects the strength and spatial variation of the different carbon pumps. Primary production is only slightly reduced in comparison to present-day; it is intensified along the equator, especially in the Atlantic. This enhances remineralization of organic matter, resulting in strong oxygen minimum zones and CaCO3 dissolution in intermediate waters. We show that an equilibrium CO2 exchange without increasing total alkalinity concentrations above today's values is achieved. Yet, the surface ocean pH and the saturation state with respect to CaCO3 are lower than today. Our results indicate that under such conditions, the surface ocean carbonate chemistry is expected to be more sensitive to a carbon perturbation (i.e. the PETM) due to lower CO32− concentration, whereas the deep ocean calcite sediments would be less vulnerable to dissolution due to the sluggish ocean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.