Enhancements in the performance of organic–inorganic nanocomposite thermoelectrics may be obtained with both small and large energy barriers at the organic–inorganic interfaces.
ABSTRACT:Frictional, adhesive, and elastic characteristics of graphene edges are determined through lateral force microscopy. Measurements reveal a significant local frictional increase at exposed graphene edges, whereas a single overlapping layer of graphene removes this local frictional increase. Comparison of lateral force and atomic force microscopy measurements shows that local forces on the probe are successfully modeled with a vertical adhesion in the vicinity of the atomic-scale graphene steps which also provides a new low-load calibration method. Lateral force microscopy performed with carefully maintained low-adhesion probes shows evidence of elastic straining of graphene edges. Estimates of the energy stored of this observed elastic response is consistent with out-of-plane bending of the graphene edge. PACS (81.05.ue, 81.07.Lk, 46.55.+d, 68.35.Af, 62.20.de) 2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.