Optimization of the mass sensitivity of wafer bonded resonant gravimetric capacitive micromachined ultrasonic transducers (CMUTs) is presented. Gas phase sensors based on resonant gravimetric CMUTs have previously been demonstrated. An important figure of merit of these sensors is the sensitivity which, for typical CMUT geometries, is increased by decreasing the radius of the CMUT cell. This paper investigates how to minimize the radius of CMUT cells fabricated using the wafer bonding process. The design and process parameters affecting the radius of the CMUT and hereby the sensitivity are studied through numerical simulations and atomic force microscopy measurements. An excellent fit was obtained between the simulations and measured profiles with a low relative error of ≤ 5%, thus validating the simulation model. Two types of CMUTs are designed and fabricated using the design and process rules determined herein, with experimentally determined mass sensitivities of 0.46 Hz/ag and 0.44 Hz/ag, respectively. The two CMUT devices have cavities made using the local oxidation of silicon (LOCOS) and reactive ion etching (RIE) process. For the LOCOS process, it was found that the smallest radius can be obtained by choosing a Si 3 N 4 oxidation mask and lowering the pad SiO 2 thickness, vacuum gap height, and Si bump height. For the RIE process, the vertical dimensions do not influence the horizontal dimensions and consequently, equivalent rules do not exist.
Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The detection of phenylacetone is of interest as it is a common precursor for the synthesis of (meth)amphetamine. Resonant gravimetric sensors can be used to detect the mass and hereby the concentration of a gas while colorimetric arrays typically have an exceptional selectivity to the target analyte if the right colorimetric dyes are chosen. We present a sensor system consisting of a Capacitive Micromachined Ultrasonic Transducer (CMUT) and a colorimetric array for detection of phenylacetone. The CMUT is used as a resonant gravimetric gas sensor where the resonance frequency shift due to mass loading of the plate. A single Local Oxidation of Silicon (LOCOS) step was used to define the cavities which were sealed with a Si3N4 plate with a thickness of 100 nm, resulting in a resonance frequency of 38.8 MHz and a theoretical mass sensitivity of 28.3 zg Hz•µm 2. The CMUTs were functionalized with the same dyes used to fabricate colorimetric arrays. While both the CMUTs and the colorimetric arrays showed selectivity to phenylacetone, the best selectivity was achieved by the colorimetric array. Furthermore, the mass of the phenylacetone was found as a function of time. Thus, the combination of the colorimetric array and the CMUT results in a good selectivity and a quantitative value for the mass.
We present an anode design for silicon-based direct methanol fuel cell (DMFC) applications. Platinum was deposited conformally by atomic layer deposition (ALD) onto vertically aligned, nitrogendoped multi-walled carbon nanotubes (MWCNTs) grown on porous silicon. The deposition was carried out in a top-flow ALD reactor at 250°C, using MeCpPtMe 3 and O 2 as precursors. The anode was tested for the methanol oxidation reaction (MOR) in a three-electrode electrochemical set-up and it showed improved catalytic activity compared to a reference sample of Pt deposited on flat Si. It is demonstrated that ALD could be a MEMS compatible deposition technique for Si-based fuel cell applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.