Background Many echinoderms form seasonal aggregations prior to spawning. In some fecund species, a spawning event can lead to population outbreaks with detrimental ecosystem impacts. For instance, outbreaks of crown-of-thorns starfish (COTS), a corallivore, can destroy coral reefs. Here, we examine the gene expression in gravid male and female COTS prior to spawning in the wild, to identify genome-encoded factors that may regulate aggregation and spawning. This study is informed by a previously identified exoproteome that attracts conspecifics. To capture the natural gene expression profiles, we isolated RNAs from gravid female and male COTS immediately after they were removed from the Great Barrier Reef. Results Sexually dimorphic gene expression is present in all seven somatic tissues and organs that we surveyed and in the gonads. Approximately 40% of the exoproteome transcripts are differentially expressed between sexes. Males uniquely upregulate an additional 68 secreted factors in their testes. A suite of neuropeptides in sensory organs, coelomocytes and gonads is differentially expressed between sexes, including the relaxin-like gonad-stimulating peptide and gonadotropin-releasing hormones. Female sensory tentacles—chemosensory organs at the distal tips of the starfish arms—uniquely upregulate diverse receptors and signalling molecules, including chemosensory G-protein-coupled receptors and several neuropeptides, including kisspeptin, SALMFamide and orexin. Conclusions Analysis of 103 tissue/organ transcriptomes from 13 wild COTS has revealed genes that are consistently differentially expressed between gravid females and males and that all tissues surveyed are sexually dimorphic at the molecular level. This finding is consistent with female and male COTS using sex-specific pheromones to regulate reproductive aggregations and synchronised spawning events. These pheromones appear to be received primarily by the sensory tentacles, which express a range of receptors and signalling molecules in a sex-specific manner. Furthermore, coelomocytes and gonads differentially express signalling and regulatory factors that control gametogenesis and spawning in other echinoderms.
Marine animals in the wild are often difficult to access, so they are studied in captivity. However, the implicit assumption that physiological processes of animals in artificial environments are not different from those in the wild has rarely been tested. Here, we investigate the extent to which an animal is impacted by captivity by comparing global gene expression in wild and captive crown‐of‐thorns starfish (COTS). In a preliminary analysis, we compared transcriptomes of three external tissues obtained from multiple wild COTS with a single captive COTS maintained in aquaria for at least 1 week. On average, an astonishingly large 24% of the coding sequences in the genome were differentially expressed. This led us to conduct a replicated experiment to test more comprehensively the impact of captivity on gene expression. Specifically, a comparison of 13 wild with 8 captive COTS coelomocyte transcriptomes revealed significant differences in the expression of 20% of coding sequences. Coelomocyte transcriptomes in captive COTS remain different from those in wild COTS for more than 30 days and show no indication of reverting back to a wild state (i.e. no evidence of acclimation). Genes upregulated in captivity include those involved in oxidative stress and energy metabolism, whereas genes downregulated are involved in cell signalling. These changes in gene expression indicate that being translocated and maintained in captivity has a marked impact on the physiology and health of these echinoderms. This study suggests that caution should be exercised when extrapolating results from captive aquatic invertebrates to their wild counterparts.
Marine animals in the wild are often difficult to access, so that biologists have to extrapolate from the study of animals in captivity. However, the implicit assumption that physiological and cellular processes of animals in artificial environments are not significantly different from those in the wild has rarely been tested. Here we investigate the extent to which the biological state of an animal is impacted by captivity by comparing global gene expression in wild and captive crown-of-thorns starfish (COTS). We compare transcriptomes of three external tissues obtained from wild COTS with captive COTS maintained in aquaria for at least one week. On average, an astonishingly large 24% of the coding sequences in the genome are differentially expressed. Comparing transcriptomes from coelomocytes – cells in internal coelomic fluid – in wild and captive COTS, we find that 20% of the coding sequences in the genome rapidly change expression. These captive transcriptomes remained markedly different from the wild ones for more than 30 days in captivity, and showed no indication of reverting back to a wild state. Genes consistently upregulated in captivity include those involved in oxidative stress and energy metabolism, whereas genes downregulated are involved in intercellular signalling. These extensive changes in gene expression in captive COTS suggest that captivity has a profound and sustained impact on the physiology, behaviour and health of these echinoderms. The potential for such dramatic changes should be accounted for when designing studies seeking to understand wild animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.