Apples (Malus spp., Rosaceae) and products thereof contain high amounts of polyphenols which show diverse biological activities and may contribute to beneficial health effects, like protecting the intestine against inflammation initiated by chronic inflammatory bowel diseases (IBD). IBD are characterized by an excessive release of several proinflammatory cytokines and chemokines by different cell types which results consequently in an increased inflammatory response. In the present study we investigated the preventive effectiveness of polyphenolic juice extracts and single major constituents on inflammatory gene expression in immunorelevant human cell lines (DLD-1, T84, MonoMac6, Jurkat) induced with specific stimuli. Besides the influence on proinflammatory gene expression, the effect on NF-kappaB-, IP-10-, IL-8-promoter-, STAT1-dependent signal transduction, and the relative protein levels of multiple released cytokines and chemokines were studied. DNA microarray analysis of several genes known to be strongly regulated during gastrointestinal inflammation, combined with quantitative real-time PCR (qRT-PCR) revealed that the apple juice extract AE04 (100-200 microg/mL) significantly inhibited the expression of NF-kappaB regulated proinflammatory genes (TNF-alpha, IL-1beta, CXCL9, CXCL10), inflammatory relevant enzymes (COX-2, CYP3A4), and transcription factors (STAT1, IRF1) in LPS/IFN-gamma stimulated MonoMac6 cells without significant effects on the expression of house-keeping genes. A screening of some major compounds of AE04 revealed that the flavan-3-ol dimer procyanidin B(2 )is mainly responsible for the anti-inflammatory activity of AE04. Furthermore, the dihydrochalcone aglycone phloretin and the dimeric flavan-3-ol procyanidin B(1 )significantly inhibited proinflammatory gene expression and repressed NF-kappaB-, IP-10-, IL-8-promoter-, and STAT1-dependent signal transduction in a dose-dependent manner. The influence on proinflammatory gene expression by the applied polyphenols thereby strongly correlated with the increased protein levels investigated by human cytokine array studies. In summary, we evaluated selected compounds responsible for the anti-inflammatory activity of AE04. In particular, procyanidin B(1), procyanidin B(2), and phloretin revealed anti-inflammatory activities in vitro and therefore may serve as transcription-based inhibitors of proinflammatory gene expression.
In previous studies, we identified the fungal macrocyclic lactone (S)-curvularin (SC) as an anti-inflammatory agent using a screening system detecting inhibitors of the Janus kinase/signal transducer and activator of transcription pathway. The objective of the present study was to investigate whether SC is able to decrease proinflammatory gene expression in an in vivo model of a chronic inflammatory disease. Therefore, the effects of SC and dexamethasone were compared in the model of collagen-induced arthritis (CIA) in mice. Total genomic microarray analyses were performed to identify SC target genes. In addition, in human C28/I2 chondrocytes and MonoMac6 monocytes, the effect of SC on proinflammatory gene expression was tested at the mRNA and protein level. In the CIA model, SC markedly reduced the expression of a number of proinflammatory cytokines and chemokines involved in the pathogenesis of CIA as well as human rheumatoid arthritis (RA). In almost all cases, the effects of SC were comparable with those of dexamethasone. In microarray analyses, we identified additional new therapeutic targets of SC. Some of them, such as S100A8, myeloperoxidase, or cathelicidin, an antimicrobial peptide, are known to be implicated in pathophysiological processes in RA. Similar anti-inflammatory effects of SC were also observed in human C28/I2 chondrocyte cells, which are resistant to glucocorticoid treatment. These data indicate that SC and glucocorticoid effects are mediated via independent signal transduction pathways. In summary, we demonstrate that SC is a new effective anti-inflammatory compound that may serve as a lead compound for the development of new drugs for the therapy of chronic inflammatory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.