The program Comet was successfully used to accurately measure the length of the cochlea models in clinically available imaging. The lower image quality of patient scans reduced the precision of the measurement. Estimations using the A value are a quicker alternative for averagely sized cochleae in cases where the lack of accuracy is tolerable.
The integration of a shape memory actuator is a potential mechanism to achieve a consistent perimodiolar position after electrode insertion during cochlear implant surgery. After warming up, and therefore activation of the shape memory effect, the electrode array will change from a straight configuration into a spiral shaped one leading to a final position close to the modiolus. The aim of this study was to investigate whether the integration of an additional thin wire (referred to as an "inlay") made of Nitinol, a well-established shape memory alloy, in a conventional hearing preservation electrode array will affect the insertion behaviour in terms of increased risk of insertion trauma. Six conventional Hybrid-L electrode arrays (Cochlear Ltd., Sydney, Australia) were modified to incorporate a wire inlay made of Nitinol. The diameter of the wires was 100 µm with a tapered tip region. Electrodes were inserted into human temporal bone specimens using a standard surgical approach. After insertion and embedding in epoxy resin, histological sections were prepared to evaluate insertion trauma. Insertion was straightforward and no difficulties were observed. The addition of a shape memory wire, thin but also strong enough to curl the electrode array, does not result in histologically detectable insertion trauma. Atraumatic insertion seems possible.
Drilling a minimally invasive access to the inner ear is a demanding task in which a computer-assisted surgical system can support the surgeon. Herein, we describe the design of a new micro-stereotactic targeting system dedicated to cochlear implant (CI) surgery and its experimental evaluation in an ex vivo study. Methods: The proposed system consists of a reusable, bone-anchored reference frame, and a patient-specific drilling jig on top of it. Individualization of the jig is simplified to a single counterbored hole drilled out of a blank. For accurate counterboring, the setup includes a manufacturing device for individual positioning of the blank. The system was tested in a preclinical setting using twelve human cadaver donors. Cone beam computed tomograph (CBCT) scans were obtained and a drilling trajectory was planned pointing towards the basal part of the cochlea. The surgical drill was moved forward manually and slowly while the jig constrained the drill along the predetermined path. Results: Drilling could be performed with preservation of facial nerve in all specimens. The mean error caused by the system at the target point in front of the cochlea was 0.30 mm ± 0.11 mm including an inaccuracy of 0.09 mm ± 0.03 mm for counterboring the guiding aperture into the jig. Conclusion: Feasibility of the proposed system to perform a minimally invasive posterior tympanotomy approach was shown successfully in all specimens. Significance: First evaluation of the new system in a comprehensive ex vivo study demonstrating sufficient accuracy and the feasibility of the whole concept.
A minimally-invasive surgical (MIS) approach to cochlear implantation, if safe, practical, simple in surgical handling, and also affordable has the potential to replace the conventional surgical approaches. Our MIS approach uses patient-specific drilling templates (positioning jigs). While the most popular MIS approaches use robots, the robotic aspect is literally put aside, because our high-precision parallel kinematics is only used to individualize a positioning jig. This jig can then be mounted onto a bone-anchored mini-stereotactic frame at the patient's skull and used to create a drill-hole through the temporal bone to the patient's cochlea. We present the first clinical experience where we use sham drill bits of different diameters instead of drilling into the bone in order to demonstrate the feasibility and accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.