Background COVID-19 is rapidly spreading causing extensive burdens across the world. Effective vaccines to prevent COVID-19 are urgently needed. Methods and findings Our objective was to assess the effectiveness and safety of COVID-19 vaccines through analyses of all currently available randomized clinical trials. We searched the databases CENTRAL, MEDLINE, Embase, and other sources from inception to June 17, 2021 for randomized clinical trials assessing vaccines for COVID-19. At least two independent reviewers screened studies, extracted data, and assessed risks of bias. We conducted meta-analyses, network meta-analyses, and Trial Sequential Analyses (TSA). Our primary outcomes included all-cause mortality, vaccine efficacy, and serious adverse events. We assessed the certainty of evidence with GRADE. We identified 46 trials; 35 trials randomizing 219 864 participants could be included in our analyses. Our meta-analyses showed that mRNA vaccines (efficacy, 95% [95% confidence interval (CI), 92% to 97%]; 71 514 participants; 3 trials; moderate certainty); inactivated vaccines (efficacy, 61% [95% CI, 52% to 68%]; 48 029 participants; 3 trials; moderate certainty); protein subunit vaccines (efficacy, 77% [95% CI, −5% to 95%]; 17 737 participants; 2 trials; low certainty); and viral vector vaccines (efficacy 68% [95% CI, 61% to 74%]; 71 401 participants; 5 trials; low certainty) prevented COVID-19. Viral vector vaccines decreased mortality (risk ratio, 0.25 [95% CI 0.09 to 0.67]; 67 563 participants; 3 trials, low certainty), but comparable data on inactivated, mRNA, and protein subunit vaccines were imprecise. None of the vaccines showed evidence of a difference on serious adverse events, but observational evidence suggested rare serious adverse events. All the vaccines increased the risk of non-serious adverse events. Conclusions The evidence suggests that all the included vaccines are effective in preventing COVID-19. The mRNA vaccines seem most effective in preventing COVID-19, but viral vector vaccines seem most effective in reducing mortality. Further trials and longer follow-up are necessary to provide better insight into the safety profile of these vaccines.
OBJECTIVES: Randomized clinical trials (RCTs) conducted in adult ICU patients increasingly include patient-important outcomes other than mortality. This comes with challenges regarding outcome choices/definitions, handling of deceased patients and missing data in analyses, and choices of effect measures and statistical methods due to complex distributions. This scoping review aimed to characterize how these challenges are handled in relevant contemporary RCTs. DATA SOURCES: We systematically searched 10 selected journals for RCTs conducted primarily in adult ICU patients published between 1 January 2018 and 5 May 2022 reporting at least one patient-important outcome other than mortality, including “days alive without”…-type outcomes, functional/cognitive/neurologic outcomes, health-related quality of life (HRQoL) outcomes, and ordinal/other outcomes. STUDY SELECTION: Abstracts and full-texts were assessed independently and in duplicate by two reviewers. DATA EXTRACTION: Data were extracted independently and in duplicate by two reviewers using predefined and pilot-tested extraction forms and subsequently categorized to facilitate analysis. DATA SYNTHESIS: We included 687 outcomes from 167 RCTs, with 32% of RCTs using a patient-important outcome other than mortality as a (co-)primary outcome, most frequently “days alive without”…-type outcomes. Many different functional/cognitive/neurologic (103) and HRQoL (29) outcomes were reported. Handling of deceased patients varied, with analyses frequently restricted to survivors only for functional/cognitive/neurologic (62%) and HRQoL (89%) outcomes. Follow-up was generally longer and missing data proportions higher for functional/cognitive/neurologic and HRQoL outcomes. Most outcomes were analyzed using nonparametric tests (31%), linear regression/t tests (27%), chi-square–like tests (12%), and proportional odds logistic regression (9%), often without presentation of actual treatment effects estimates (38%). CONCLUSIONS: In this sample of RCTs, substantial variation in practice and suboptimal methodological choices were observed. This calls for increased focus on standardizing outcome choices and definitions, adequate handling of missing data and deceased patients in analyses, and use of statistical methods quantifying effect sizes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.