We determined the taxonomic composition of the bacterioplankton of the epipelagic zone of the Atlantic Ocean along a latitudinal transect (51°S–47°N) using Illumina sequencing of the V5-V6 region of the 16S rRNA gene and inferred co-occurrence networks. Bacterioplankon community composition was distinct for Longhurstian provinces and water depth. Free-living microbial communities (between 0.22 and 3 μm) were dominated by highly abundant and ubiquitous taxa with streamlined genomes (e.g., SAR11, SAR86, OM1, Prochlorococcus) and could clearly be separated from particle-associated communities which were dominated by Bacteroidetes, Planktomycetes, Verrucomicrobia, and Roseobacters. From a total of 369 different communities we then inferred co-occurrence networks for each size fraction and depth layer of the plankton between bacteria and between bacteria and phototrophic micro-eukaryotes. The inferred networks showed a reduction of edges in the deepest layer of the photic zone. Networks comprised of free-living bacteria had a larger amount of connections per OTU when compared to the particle associated communities throughout the water column. Negative correlations accounted for roughly one third of the total edges in the free-living communities at all depths, while they decreased with depth in the particle associated communities where they amounted for roughly 10% of the total in the last part of the epipelagic zone. Co-occurrence networks of bacteria with phototrophic micro-eukaryotes were not taxon-specific, and dominated by mutual exclusion (~60%). The data show a high degree of specialization to micro-environments in the water column and highlight the importance of interdependencies particularly between free-living bacteria in the upper layers of the epipelagic zone.
The diversity of macro-organisms increases towards the equator, with almost no exceptions. It is the most conserved biogeographical pattern on earth and is thought to be related to the increase of temperature and productivity in the tropics. The extent and orientation of a latitudinal gradient of marine bacterioplankton diversity is controversial. Here we studied the euphotic zone of the Atlantic Ocean based on a transect covering ~12.000 km from 51°S to 47 °N. Water samples were collected at 26 stations at five depths between 20 and 200 m and sequentially filtered through 8 μm, 3 μm and 0,22 μm filters, resulting in a total of 359 samples. Illumina sequencing of the V5–V6 region of the 16S rRNA gene revealed a clear biogeographic pattern with a double inverted latitudinal gradient. Diversity was higher in mid-latitudinal regions of the Atlantic Ocean and decreased towards the equator. This pattern was conserved for bacteria from all three planktonic size fractions. Diversity showed a non-linear relationship with temperature and was negatively correlated with bacterial cell numbers in the upper depth layers (<100 m). The latitudinal gradients of marine bacterial diversity and the mechanisms that govern them are distinct from those found in macro-organisms.
The Southern Ocean constitutes about 10% of the global oceans' volume and is characterized by high primary production. Particulate organic matter (POM) is exported from the photic zone to the deep ocean and sustains life of particle associated (PA) and free-living (FL) bacterial communities in the dark realm. Little is known about the composition and diversity of PA and FL bacterial communities below the photic zone and how they differ among various regions of the Southern Ocean. Therefore, we investigated the composition of small (3-8 lm) and large (> 8 lm) PA and FL (0.2-3 lm) bacterial communities between 500 m and 3600 m in the Bransfield Strait, Drake Passage, and the south Atlantic Ocean featuring also Southern Ocean water masses. PA bacterial communities had a higher OTU richness and evenness than FL ones. Taxonomic analysis revealed a different community composition between FL and PA bacteria. A large number of OTUs belonging to diverse phyla (Bacteroidetes, Planctomycetes, Betaproteobacteria, Deltaproteobacteria, and Verrucomicrobia) were significantly enriched on particles; in contrast very few bacterial lineages were FL specialists. Lifestyle (FL vs. PA) and region (Bransfield basin vs. other regions) strongly influenced bacterial communities. Depth explained only marginal fraction of the total variation ( 12%), suggesting that selective processes driven by depth have a smaller effect in the Southern Ocean when compared to life-style (25%) and region (31%). Overall these data indicate a strong influence of isolated water masses such as the basin of the Bransfield Strait on the composition of bacterial communities in the dark ocean.
In order to determine the influence of geographical distance, depth, and Longhurstian province on bacterial community composition and compare it with the composition of photosynthetic micro-eukaryote communities, 382 samples from a depth-resolved latitudinal transect (51°S–47°N) from the epipelagic zone of the Atlantic ocean were analyzed by Illumina amplicon sequencing. In the upper 100 m of the ocean, community similarity decreased toward the equator for 6000 km, but subsequently increased again, reaching similarity values of 40–60% for samples that were separated by ~12,000 km, resulting in a U-shaped distance-decay curve. We conclude that adaptation to local conditions can override the linear distance-decay relationship in the upper epipelagial of the Atlantic Ocean which is apparently not restrained by barriers to dispersal, since the same taxa were shared between the most distant communities. The six Longhurstian provinces covered by the transect were comprised of distinct microbial communities; ~30% of variation in community composition could be explained by province. Bacterial communities belonging to the deeper layer of the epipelagic zone (140–200 m) lacked a distance-decay relationship altogether and showed little provincialism. Interestingly, those biogeographical patterns were consistently found for bacteria from three different size fractions of the plankton with different taxonomic composition, indicating conserved underlying mechanisms. Analysis of the chloroplast 16S rRNA gene sequences revealed that phytoplankton composition was strongly correlated with both free-living and particle associated bacterial community composition (R between 0.51 and 0.62, p < 0.002). The data show that biogeographical patterns commonly found in macroecology do not hold for marine bacterioplankton, most likely because dispersal and evolution occur at drastically different rates in bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.