Software development is heavily dependent on the participants of the process and their roles within the process. Each developer has his specific skills and interests and hence contributes to the project in a different way. While some programmers work on separate modules, others developers integrate these modules towards the final product. To identify such different groups of people one approach is to work with methods taken from social network analysis. To this end, a social network has to be defined in a suitable way, and appropriate analysis strategies have to be chosen. This paper shows how a network of software developers could be defined based on information in a software repository, and what it can possibly tell about roles of developers (and what not) in the process of the application server Tomcat.
Abstract. In this paper we introduce two novel algorithms for drawing sequences of orthogonal and hierarchical graphs while preserving the mental map. Both algorithms can be parameterized to trade layout quality for dynamic stability. In particular, we had to develop new metrics which work upon the intermediate results of layout phases. We discuss some properties of the resulting animations by means of examples.
In mean-risk portfolio optimization, it is typically assumed that the assets follow a known distribution P 0 , which is estimated from observed data. Aiming at an investment strategy which is robust against possible misspecification of P 0 , the portfolio selection problem is solved with respect to the worst-case distribution within a Wasserstein-neighborhood of P 0 . We review tractable formulations of the portfolio selection problem under model ambiguity, as it is called in the literature. For instance, it is known that high model ambiguity leads to equally-weighted portfolio diversification. However, it often happens that the marginal distributions of the assets can be estimated with high accuracy, whereas the dependence structure between the assets remains ambiguous. This leads to the problem of portfolio selection under dependence uncertainty. We show that in this case portfolio concentration becomes optimal as the uncertainty with respect to the estimated dependence structure increases. Hence, distributionally robust portfolio optimization can have two very distinct implications: Diversification on the one hand and concentration on the other hand.
No abstract
We consider settings in which the distribution of a multivariate random variable is partly ambiguous. We assume the ambiguity lies on the level of the dependence structure, and that the marginal distributions are known. Furthermore, a current best guess for the distribution, called reference measure, is available. We work with the set of distributions that are both close to the given reference measure in a transportation distance (e.g., the Wasserstein distance), and additionally have the correct marginal structure. The goal is to find upper and lower bounds for integrals of interest with respect to distributions in this set. The described problem appears naturally in the context of risk aggregation. When aggregating different risks, the marginal distributions of these risks are known and the task is to quantify their joint effect on a given system. This is typically done by applying a meaningful risk measure to the sum of the individual risks. For this purpose, the stochastic interdependencies between the risks need to be specified. In practice, the models of this dependence structure are however subject to relatively high model ambiguity. The contribution of this paper is twofold: First, we derive a dual representation of the considered problem and prove that strong duality holds. Second, we propose a generally applicable and computationally feasible method, which relies on neural networks, in order to numerically solve the derived dual problem. The latter method is tested on a number of toy examples, before it is finally applied to perform robust risk aggregation in a real‐world instance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.