Introduction: The present study evaluated the putative effect of hypobaria on resting HRV in normoxia and hypoxia. Methods: Fifteen young pilot trainees were exposed to five different conditions in a randomized order: normobaric normoxia (NN, P B = 726 ± 5 mmHg, F I O 2 = 20.9%), hypobaric normoxia (HN, P B = 380 ± 6 mmHg, F I O 2 ∼ =40%), normobaric hypoxia (NH, P B = 725 ± 4 mmHg, F I O 2 ∼ =11%); and hypobaric hypoxia (HH at 3000 and 5500 m, HH3000 and HH5500, P B = 525 ± 6 and 380 ± 8 mmHg, respectively, F I O 2 = 20.9%). HRV and pulse arterial oxygen saturation (SpO 2) were measured at rest seated during a 6 min period in each condition. HRV parameters were analyzed (Kubios HVR Standard, V 3.0) for time (RMSSD) and frequency (LF, HF, LF/HF ratio, and total power). Gas exchanges were collected at rest for 10 min following HRV recording. Results: SpO 2 decreased in HH3000 (95 ± 3) and HH5500 (81 ± 5), when compared to NN (99 ± 0). SpO 2 was higher in NH (86 ± 4) than HH5500 but similar between HN (98 ± 2) and NN. Participants showed lower RMSSD and total power values in NH and HH5500 when compared to NN. In hypoxia, LF/HF ratio was greater in HH5500 than NH, whereas in normoxia, LF/HF ratio was lower in HN than NN. Minute ventilation was higher in HH5500 than in all other conditions. Discussion: The present study reports a slight hypobaric effect either in normoxia or in hypoxia on some HRV parameters. In hypoxia, with a more prominent sympathetic activation, the hypobaric effect is likely due to the greater ventilation stimulus and larger desaturation. In normoxia, the HRV differences may come from the hyperoxic breathing and slight breathing pattern change due to hypobaria in HN.
INTRODUCTION: Exposure to hypoxia has a deleterious effect on cognitive function; however, the putative effect of hypobaria remains unclear. The present study aimed to evaluate cognitive performance in pilot trainees who were exposed to acute normobaric (NH) and hypobaric hypoxia (HH). Of relevance for military pilots, we also aimed to assess cognitive performance in hypobaric normoxia (HN).METHODS: A total of 16 healthy pilot trainees were exposed to 4 randomized conditions (i.e., normobaric normoxia, NN, altitude level of 440 m; HH at 5500 m; NH, altitude simulation of 5500 m; and HN). Subjects performed a cognitive assessment (KLT-R test). Cerebral oxygen delivery (cDO2) was estimated based middle cerebral artery blood flow velocity (MCAv) and pulse oxygen saturation (Spo2) monitored during cognitive assessment.RESULTS: Percentage of errors increased in NH (14.3 9.1%) and HH (12.9 6.4%) when compared to NN (6.5 4.1%) and HN (6.0 4.0%). Number of calculations accomplished was lower only in HH than in NN and HN. When compared to NN, cDO2 decreased in NH and HH.DISCUSSION: Cognitive performance was decreased similarly in acute NH and HH. The cDO2 reduction in NH and HH implies insufficient MCAv increase to ensure cognitive performance maintenance. The present study suggests negligible hypobaric influence on cognitive performance in hypoxia and normoxia.Aebi MR, Bourdillon N, Noser P, Millet GP, Bron D. Cognitive impairment during combined normobaric vs. hypobaric and normoxic vs. hypoxic acute exposure. Aerosp Med Hum Perform. 2020; 91(11):845851.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.