Ir-catalysed allylic substitution is supplementing the traditional Pd-catalysed variant. With simple, easily available monosubstituted allylic acetates and carbonates as substrates, Ir catalysts generally favour chiral, branched products, while Pd catalysts typically give rise to linear, achiral products. With phosphorus amidites as ligands, regioselectivities >10 : 1 and enantiomeric excess in the range 95-99 %ee are currently routinely achieved. A broad range of nucleophiles can be employed: for example stabilised carbanions, amines including their sulfonyl- and diacyl-derivatives, phenolates and alkoxides. A few applications, based on combinations of the allylic substitution and ring closing metathesis, indicate considerable potential of the method for the synthesis of biologically active compounds.
The mechanistic course of the amination of alcohols with ammonia catalyzed by a structurally modified congener of Milstein's well-defined acridine-based PNP-pincer Ru complex has been investigated both experimentally and by DFT calculations. Several key Ru intermediates have been isolated and characterized. The detailed analysis of a series of possible catalytic pathways (e.g., with and without metal-ligand cooperation, inner- and outer-sphere mechanisms) leads us to conclude that the most favorable pathway for this catalyst does not require metal-ligand cooperation.
[Cp*Ir(Pro)Cl] (Pro = prolinato) was identified among a series of Cp*-iridium half-sandwich complexes as a highly reactive and selective catalyst for the alkylation of amines with alcohols. It is active under mild conditions in either toluene or water without the need for base or other additives, tolerates a wide range of alcohols and amines, and gives secondary amines in good to excellent isolated yields.
Gold rush: Gold catalysis remains a highly attractive field of research for the discovery of new reaction types. A novel intermolecular addition of aldehydes and ketones to enynes leads to the diastereoselective synthesis of 2‐oxabicyclo[3.1.0]hexanes (see scheme).
The complex Ru-MACHO ( 1) is a widely used precatalyst for hydrogenation and dehydrogenation reactions under basic conditions. In an attempt to identify the active catalyst form, 1 was reacted with a strong base. The formation of previously unreported species was observed by NMR and mass spectrometry. This observation indicated that complex 1 quickly degraded under basic conditions when no substrate was present. X-ray crystallography enabled the identification of three complexes as products of this degradation of complex 1. These complexes suggested degradation pathways which included ligand cleavage and reassembly, along with reduction of the ruthenium atom. One of the decomposition products, the Ru 0 complex [Ru(N(CH 2 CH 2 PPh 2 ) 3 )CO] (5), was prepared independently and studied. 5 was found to be active, entirely additivefree, in the acceptorless dehydrogenation of aliphatic alcohols to esters. The hydrogenation of esters catalyzed by 5 was also demonstrated under base-free conditions with methanol as an additive. Protic substrates were shown to add reversibly to complex 5, generating Ru II −hydrido species, thus presenting a rare example of reversible oxidative addition from Ru 0 to Ru II and reductive elimination from Ru II to Ru 0 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.