In this paper we present a novel approach to semi-automatically learn concept hierarchies from natural language requirements of the automotive industry. The approach is based on the distributional hypothesis and the special characteristics of domain-specific German compounds. We extract taxonomies by using clustering techniques in combination with general thesauri. Such a taxonomy can be used to support requirements engineering in early stages by providing a common system understanding and an agreedupon terminology. This work is part of an ontology-driven requirements engineering process, which builds on top of the taxonomy. Evaluation shows that this taxonomy extraction approach outperforms common hierarchical clustering techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.