On the basis of single-locus models, spatial heterogeneity of the environment coupled with strong population regulation within each habitat (soft selection) is considered an important mechanism maintaining genetic variation. We studied the capacity of soft selection to maintain polygenic variation for a trait determined by several additive loci, selected in opposite directions in two habitats connected by dispersal. We found three main types of stable equilibria. Extreme equilibria are characterized by extreme specialization to one habitat and loss of polymorphism. They are analogous to monomorphic equilibria in singe-locus models and are favored by similar factors: high dispersal, weak selection, and low marginal average fitness of intermediate genotypes. At the remaining two types of equilibria the population mean is intermediate but variance is very different. At fully polymorphic equilibria all loci are polymorphic, whereas at low-variance equilibria at most one locus remains polymorphic. For most parameters only one type of equilibrium is stable; the transition between the domains of fully polymorphic and low-variance equilibria is typically sharp. Low-variance equilibria are favored by high marginal average fitness of intermediate genotypes, in contrast to single-locus models, in which marginal overdominance is particularly favorable for maintenance of polymorphism. The capacity of soft selection to maintain polygenic variation is thus more limited than extrapolation from single-locus models would suggest, in particular if dispersal is high and selection weak. This is because in a polygenic model, variance can evolve independently of the mean, whereas in the single-locus two-allele case, selection for an intermediate mean automatically leads to maintenance of polymorphism.
We develop a model of social norms and cooperation in large societies. Within this framework we use an indirect evolutionary approach to study the endogenous formation of preferences and the co-evolution of norm compliance. The multiplicity of equilibria, which emerges in the presence of social norms, is linked to the evolutionary analysis: individuals face situations where many others cooperate as well as situations where a majority free-rides. The evolutionary adaptation to such heterogenous environments favors conditional cooperators, who condition their pro-social behavior on the others' cooperation. As conditional cooperators react flexibly to their social environment, they dominate free-riders as well as unconditional cooperators.
Mutation-generated variation in behavior is thought to promote the evolution of cooperation. Here, we study this by distinguishing two effects of mutation in evolutionary games of the finitely repeated Prisoner’s Dilemma in infinite asexual populations. First, we show how cooperation can evolve through the direct effect of mutation, i.e., the fitness impact that individuals experience from interactions with mutants before selection acts upon these mutants. Whereas this direct effect suffices to explain earlier findings, we question its generality because mutational variation usually generates the highest direct fitness impact on unconditional defectors (AllD). We identify special conditions (e.g., intermediate mutation rates) for which cooperation can be favored by an indirect effect of mutation, i.e., the fitness impact that individuals experience from interactions with descendants of mutants. Simulations confirm that AllD-dominated populations can be invaded by cooperative strategies despite the positive direct effect of mutation on AllD. Thus, here the indirect effect of mutation drives the evolution of cooperation. The higher level of cooperation, however, is not achieved by individuals triggering reciprocity (‘genuine cooperation’), but by individuals exploiting the willingness of others to cooperate (‘exploitative cooperation’). Our distinction between direct and indirect effects of mutation provides a new perspective on how mutation-generated variation alters frequency-dependent selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.