Thule Air Base in northwest Greenland experienced an extreme windstorm during the night of 8/9 March 1972. The event is not among official WMO records because the anemometer broke after recording the highest gust of 93 m s−1. A recent study re‐examined the event based on coarse‐resolution reanalyses and observations which, however, did not fully resolve the proposed storm processes. This is the first study that uses high‐resolution numerical simulations to investigate the processes associated with this windstorm. A cold‐frontal inversion and strong flow across the mountain ridge upstream of Thule Air Base (associated with a passing low pressure system) are shown to be key factors for the severe downslope windstorm in the lee of the ridge. It is shown that trapped lee waves occurred during the initial phase of the storm, but did not contribute to the highest wind speeds as proposed in the previous study. It is confirmed that rotor circulations occurred which possibly contributed to the large wind variability and, hence, large differences between individual observation sites. However, no rotors were present at the time of the highest simulated wind speed. Instead, wave breaking above the lee slope is found to indirectly contribute to the wind maxima by facilitating Kelvin–Helmholtz instability at the top of the shooting flow that caused intense wind speed pulsations near the surface. In agreement with the previous study, a corner jet was simulated, however it was not responsible for the strong winds in the vicinity of the air base. Sensitivity experiments showed that the flow field was considerably influenced by the high topography downstream of the air base and that simulations with very thin or no sea ice cover over Baffin Bay resulted in a weaker frontal inversion and up to about 30% lower maximum wind speeds.
High-resolution sea surface observations by spaceborne synthetic aperture radar (SAR) instruments are sorely neglected resources for meteorological applications in polar regions. Such radar observations provide information about wind speed and direction based on wind-induced roughness of the sea surface. The increasing coverage of SAR observations in polar regions calls for the development of SAR-specific applications that make use of the full information content of this valuable resource. Here we provide examples of the potential of SAR observations to provide details of the complex, mesoscale wind structure during polar low events, and examine the performance of two current wind retrieval methods. Furthermore, we suggest a new approach towards accurate wind vector retrieval of complex wind fields from SAR observations that does not require a priori wind direction input that the most common retrieval methods are dependent on. This approach has the potential to be particularly beneficial for numerical forecasting of weather systems with strong wind gradients, such as polar lows.
<p>High-resolution sea surface observations by spaceborne synthetic aperture radar (SAR) instruments are sorely neglected resources for meteorological applications in polar regions. Such radar observations provide information about wind speed and direction based on wind-induced roughness of the sea surface. The increasing coverage of SAR observations in polar regions calls for the development of SAR-specific applications that make use of the full information content of this valuable resource. Here we provide examples of the potential of SAR observations to provide details of the complex, mesoscale wind structure during polar low events, and examine the performance of two current wind retrieval methods. Furthermore, we suggest a new approach towards accurate wind vector retrieval of complex wind fields from SAR observations that does not require a priori wind direction input that the most common retrieval methods are dependent on. This approach has the potential to be particularly beneficial for numerical forecasting of weather systems with strong wind gradients, such as polar lows.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.