Ag sampling is a key process in dendritic cell (DC) biology. DCs use constitutive macropinocytosis, receptor-mediated endocytosis, and phagocytosis to capture exogenous Ags for presentation to T cells. We investigated the mechanisms that regulate Ag uptake by DCs in the steady-state and after a short-term LPS exposure in vitro and in vivo. We show that the glucocorticoid-induced leucine zipper protein (GILZ), already known to regulate effector versus regulatory T cell activation by DCs, selectively limits macropinocytosis, but not receptor-mediated phagocytosis, in immature and recently activated DCs. In vivo, the GILZ-mediated inhibition of Ag uptake is restricted to the CD8α DC subset, which expresses the highest GILZ level among splenic DC subsets. In recently activated DCs, we further establish that GILZ limits p38 MAPK phosphorylation, providing a possible mechanism for GILZ-mediated macropinocytosis control. Finally, our results demonstrate that the modulation of Ag uptake by GILZ does not result in altered Ag presentation to CD4 T cells but impacts the efficiency of cross-presentation to CD8 T cells. Altogether, our results identify GILZ as an endogenous inhibitor of macropinocytosis in DCs, the action of which contributes to the fine-tuning of Ag cross-presentation.
Dendritic cells (DCs) are key antigen-presenting cells that control the induction of both tolerance and immunity. Understanding the molecular mechanisms regulating DCs commitment toward a regulatory- or effector-inducing profile is critical for better designing prophylactic and therapeutic approaches. Initially identified in dexamethasone-treated thymocytes, the glucocorticoid-induced leucine zipper (GILZ) protein has emerged as a critical factor mediating most, but not all, glucocorticoids effects in both non-immune and immune cells. This intracellular protein exerts pleiotropic effects through interactions with transcription factors and signaling proteins, thus modulating signal transduction and gene expression. GILZ has been reported to control the proliferation, survival, and differentiation of lymphocytes, while its expression confers anti-inflammatory phenotype to monocytes and macrophages. In the past twelve years, a growing set of data has also established that GILZ expression in DCs is a molecular switch controlling their T-cell-priming capacity. Here, after a brief presentation of GILZ isoforms and functions, we summarize current knowledge regarding GILZ expression and regulation in DCs, in both health and disease. We further present the functional consequences of GILZ expression on DCs capacity to prime effector or regulatory T-cell responses and highlight recent findings pointing to a broader role of GILZ in the fine tuning of antigen capture, processing, and presentation by DCs. Finally, we discuss future prospects regarding the possible roles for GILZ in the control of DCs function in the steady state and in the context of infections and chronic pathologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.