At high contrast, the PSF algorithms provided the highest spatial resolution and lowest SUVmean deviation from the reference SUV. In contrast, both algorithms showed the highest deviations in SUVmax and threshold-based MTV definition. At low contrast, all investigated reconstruction algorithms performed approximately equally. The use of PSF algorithms for quantitative PET data, e.g., for target volume definition or in serial PET studies, should be performed with caution - especially if comparing SUV of lesions with high and low contrasts.
An optical 3D sensor provides an additional tool for verification of correct patient settlement on a Tomotherapy treatment machine. The patient's position in the actual treatment is compared with the intended position defined in treatment planning. A commercially available optical 3D sensor measures parts of the body surface and estimates the deviation from the desired position without markers. The registration precision of the in-built algorithm and of selected ICP (iterative closest point) algorithms is investigated on surface data of specially designed phantoms captured by the optical 3D sensor for predefined shifts of the treatment table. A rigid body transform is compared with the actual displacement to check registration reliability for predefined limits. The curvature type of investigated phantom bodies has a strong influence on registration result which is more critical for surfaces of low curvature. We investigated the registration accuracy of the optical 3D sensor for the chosen phantoms and compared the results with selected unconstrained ICP algorithms. Safe registration within the clinical limits is only possible for uniquely shaped surface regions, but error metrics based on surface normals improve translational registration. Large registration errors clearly hint at setup deviations, whereas small values do not guarantee correct positioning.
BackgroundThe maximum standardized uptake value (SUVmax) is a common clinical parameter for quantification in F18-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT), but it is influenced by image reconstruction. The aim of this study was to analyze the association of SUVmax deviations related to point spread function (PSF) and time-of-flight (TOF) reconstruction with tumor-to-background ratios (TBR) in colorectal liver metastases (CRLM).MethodsFifteen patients (f, 6; m, 9; median age, 59 years; range, 32 to 72 years) with 28 liver metastases were included retrospectively. FDG-PET/CT imaging (median activity, 237 MBq; range, 231 to 252 MBq; median uptake, 61 min; range, 55 to 67 min) was performed on a Siemens Biograph mCT 64 followed by image reconstruction using 3D-ordered subset expectation maximization (3D-OSEM) or 3D-OSEM with PSF modeling - both with and without TOF information. Differences in SUVmax were analyzed using the Friedman test and Wilcoxon test for paired non-parametric data. The correlation of inter-method differences with the lesions’ TBR was studied using Spearman’s rank correlation coefficient (rho). Differences between lesions with low (<4.8) and high (>4.8) TBR were analyzed using the Mann-Whitney U test (TBR measured with 3D-OSEM; binarized by its median).ResultsThere was a significant correlation of the lesions’ TBR with relative SUVmax differences related to PSF (PSF + TOF vs. 3D-OSEM + TOF, rho = 0.61; PSF vs. 3D-OSEM, rho = 0.52) or TOF (PSF + TOF vs. PSF, rho = −0.58; 3D-OSEM + TOF vs. 3D-OSEM, rho = −0.61). Accordingly, PSF algorithms only showed higher SUVmax than non-PSF algorithms in lesions with a high TBR (median differences at low/high TBR, +2.6%/+9.1% [PSF + TOF vs. 3D-OSEM + TOF]; +0.7%/+6.4% [PSF vs. 3D-OSEM]). TOF integration also led to higher SUVmax but mainly at low TBR (low/high TBR, +10.4%/+1.8% [PSF + TOF vs. PSF]; +8.6%/−0.1% [3D-OSEM + TOF vs. 3D-OSEM]).ConclusionsBoth PSF and TOF reconstruction resulted in a substantial alteration of SUVmax in CRLM. TOF provided the highest SUVmax increase in low-contrast lesions while - vice versa - PSF showed the most relevant increase in high-contrast lesions. Thus, one should be aware that quantitative analyses of lesions with varying TBR, e.g., in radiotherapy or follow-up studies, may be mainly affected by either PSF or TOF reconstruction, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.