Due to the increasing demand for high performance and cost reduction within the framework of complex system design, numerical optimization of computationally costly problems is an increasingly popular topic in most engineering fields. In this paper, several variants of the Efficient Global Optimization algorithm for costly constrained problems depending simultaneously on continuous decision variables as well as on quantitative and/or qualitative discrete design parameters are proposed. The adaptation that is considered is based on a redefinition of the Gaussian Process kernel as a product between the standard continuous kernel and a second kernel representing the covariance between the discrete variable values. Several parameterizations of this discrete kernel, with their respective strengths and weaknesses, are discussed in this paper. The novel algorithms are tested on a number of analytical test-cases and an aerospace related design problem, and it is shown that they require fewer function evaluations in order to converge towards the neighborhoods of the problem optima when compared to more commonly used optimization algorithms.
International audienceCrude Monte-Carlo or quasi Monte-Carlo methods are well suited to characterize events of which associated probabilities are not too low with respect to the simulation budget. For very seldom observed events, such as the collision probability between two aircraft in airspace, these approaches do not lead to accurate results. Indeed, the number of available samples is often insufficient to estimate such low probabilities (at least 10^6 samples are needed to estimate a probability of order 10^-4with 10% relative error with Monte-Carlo simulations). In this article, one reviewed different appropriate techniques to estimate rare event probabilities that require a fewer number of samples. These methods can be divided into four main categories: parameterization techniques of probability density function tails, simulation techniques such as importance sampling or importance splitting, geometric methods to approximate input failure space and finally, surrogate modeling. Each technique is detailed, its advantages and drawbacks are described and a synthesis that aims at giving some clues to the following question is given: “which technique to use for which problem?”
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.