Smoking is the most important preventable cause of mortality and morbidity worldwide. This nicotine addiction is mediated through the nicotinic acetylcholine receptor (nAChR), expressed on most neurons, and also many other organs in the body. Even within the ventral tegmental area (VTA), the key brain area responsible for the reinforcing properties of all drugs of abuse, nicotine acts on several different cell types and afferents. Identifying the precise action of nicotine on this microcircuit, in vivo, is important to understand reinforcement, and finally to develop efficient smoking cessation treatments. We used a novel lentiviral system to re-express exclusively high-affinity nAChRs on either dopaminergic (DAergic) or γ-aminobutyric acid-releasing (GABAergic) neurons, or both, in the VTA. Using in vivo electrophysiology, we show that, contrary to widely accepted models, the activation of GABA neurons in the VTA plays a crucial role in the control of nicotine-elicited DAergic activity. Our results demonstrate that both positive and negative motivational values are transmitted through the dopamine (DA) neuron, but that the concerted activity of DA and GABA systems is necessary for the reinforcing actions of nicotine through burst firing of DA neurons. This work identifies the GABAergic interneuron as a potential target for smoking cessation drug development.
SummaryMesolimbic dopamine encodes the benefits of a course of action. However, the value of an appetitive reward depends strongly on an animal’s current state. To investigate the relationship between dopamine, value, and physiological state, we monitored sub-second dopamine release in the nucleus accumbens core while rats made choices between food and sucrose solution following selective satiation on one of these reinforcers. Dopamine signals reflected preference for the reinforcers in the new state, decreasing to the devalued reward and, after satiation on food, increasing for the valued sucrose solution. These changes were rapid and selective, with dopamine release returning to pre-satiation patterns when the animals were re-tested in a standard food-restricted state. Such rapid and selective adaptation of dopamine-associated value signals could provide an important signal to promote efficient foraging for a varied diet.
The present results reveal new insights for the role of α7 nAChRs in modulating the action of nicotine within the mesolimbic circuit. These receptors appear to potentiate the reinforcing action of nicotine administered into the VTA while regulating its action over time on DA outflow in the ACb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.