In this paper, a multimodal event mining technique is proposed to discover repeating video segments exhibiting audio and visual consistency in a totally unsupervised manner. The mining strategy first exploits independent audio and visual cluster analysis to provide segments which are consistent in both their visual and audio modalities, thus likely corresponding to a unique underlying event. A subsequent modeling stage using discriminative models enables accurate detection of the underlying event throughout the video. Event mining is applied to unsupervised video structure analysis, using simple heuristics on occurrence patterns of the events discovered to select those relevant to the video structure. Results on TV programs ranging from news to talk shows and games, show that structurally relevant events are discovered with precisions ranging from 87 % to 98 % and recalls from 59 % to 94 %.
In this paper, we propose a new score normalization technique in Automatic Speaker Verification (ASV): the DNorm. The main advantage of this score normalization is that it does not need any additional speech data nor external speaker population, as opposed to the state-ofthe-art approaches. The D-Norm is based on the use of Kullback-Leibler (KL) distances in an ASV context. In a first step, we estimate the KL distances with a MonteCarlo method and we experimentally show that they are correlated with the verification scores. In a second step, we use this correlation to implement a score normalization procedure, the D-Norm. We analyse its performance and we compare it to that of a conventional normalization, the Z-Norm. The results show that performance of the D-Norm is comparable to that of the Z-Norm. We then conclude about the results we obtain and we discuss the applications of this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.