The
SCIP
Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework
SCIP
. The focus of this paper is on the role of the
SCIP
Optimization Suite in supporting research.
SCIP
’s main design principles are discussed, followed by a presentation of the latest performance improvements and developments in version 8.0, which serve both as examples of
SCIP
’s application as a research tool and as a platform for further developments. Further, the paper gives an overview of interfaces to other programming and modeling languages, new features that expand the possibilities for user interaction with the framework, and the latest developments in several extensions built upon
SCIP
.
Random variables and their distributions are a central part in many areas of statistical methods. The Distributions.jl package provides Julia users and developers tools for working with probability distributions, leveraging Julia features for their intuitive and flexible manipulation, while remaining highly efficient through zero-cost abstractions.
The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. This paper discusses enhancements and extensions contained in version 8.0 of the SCIP Optimization Suite. Major updates in SCIP include improvements in symmetry handling and decomposition algorithms, new cutting planes, a new plugin type for cut selection, and a complete rework of the way nonlinear constraints are handled. Additionally, SCIP 8.0 now supports interfaces for Julia as well as Matlab. Further, UG now includes a unified framework to parallelize all solvers, a utility to analyze computational experiments has been added to GCG, dual solutions can be postsolved by PaPILO, new heuristics and presolving methods were added to SCIP-SDP, and additional problem classes and major performance improvements are available in SCIP-Jack. Keywords Constraint integer programming • linear programming • mixed-integer linear programming • mixed-integer nonlinear programming • optimization solver • branch-andcut • branch-and-price • column generation • parallelization • mixed-integer semidefinite programming Mathematics Subject Classification 90C05 • 90C10 • 90C11 • 90C30 • 90C90 • 65Y05 * Extended author information is available at the end of the paper.
Bilevel optimization studies problems where the optimal response to a second mathematical optimization problem is integrated in the constraints. Such structure arises in a variety of decision-making problems in areas such as market equilibria, policy design or product pricing. We introduce near-optimal robustness for bilevel problems, protecting the upper-level decision-maker from bounded rationality at the lower level and show it is a restriction of the corresponding pessimistic bilevel problem. Essential properties are derived in generic and specific settings. This model finds a corresponding and intuitive interpretation in various situations cast as bilevel optimization problems. We develop a duality-based solution method for cases where the lower level is convex, leveraging the methodology from robust and bilevel literature. The models obtained are tested numerically using different solvers and formulations, showing the successful implementation of the near-optimal robust bilevel problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.