Industrial robots are electro-mechanical systems with double integrator behaviour, necessitating operation and model identification under closed-loop control conditions. The Inverse Dynamic Identification Model (IDIM) is a mechanical model based on Newton's laws that has the advantage of being linear with respect to the parameters. Existing Instrumental Variable (IDIM-IV) estimation provides a robust solution to this estimation problem and the paper introduces an improved IDIM-PIV method that takes account of the additive noise characteristics by adding prefilters that provide lower variance estimates of the IDIM parameters. Inspired by the prefiltering approach used in optimal Refined Instrumental Variable (RIV) estimation, the IDIM-PIV method identifies the nonlinear physical model of the robot, as well as the noise model resulting from the feedback control system. It also has the advantage of providing a systematic prefiltering process, in contrast to that required for the previous IDIM-IV method. The issue of an unknown controller is also considered and resolved using existing parametric identification. The evaluation of the new estimation algorithms on a six degrees-of-freedom rigid robot shows that they improve statistical efficiency, with the controller either known or identified as an intrinsic part of the IDIM-PIV algorithm.
Industrial robot identification is usually based on the inverse dynamic identification model (IDIM) that comes from Newton's laws and has the advantage of being linear with respect to the parameters. Building the IDIM from the measurement signals allows the use of linear regression techniques like the least-squares (LS) or the instrumental variable (IV) for instance. Nonetheless, this involves a careful preprocessing to deal with sensor noise. An alternative in system identification is to consider an output error approach where the model's parameters are iteratively tuned in order to match the simulated model's output and the measured system's output. This paper proposes an extensive comparison of three different output error approaches in the context of robot identification. One of the main outcomes of this work is to show that choosing the input torque as target identification signal instead of the output position may lead to a gain in robustness versus modeling errors and noise and in computational time. Theoretical developments are illustrated on a six degrees-of-freedom rigid robot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.