Myocardial tissue tracking imaging techniques have been developed for a more accurate evaluation of myocardial deformation (i.e. strain), with the potential to overcome the limitations of ejection fraction (EF) and to contribute, incremental to EF, to the diagnosis and prognosis in cardiac diseases. While most of the deformation imaging techniques are based on the similar principles of detecting and tracking specific patterns within an image, there are intra- and inter-imaging modality inconsistencies limiting the wide clinical applicability of strain. In this review, we aimed to describe the particularities of the echocardiographic and cardiac magnetic resonance deformation techniques, in order to understand the discrepancies in strain measurement, focusing on the potential sources of variation: related to the software used to analyse the data, to the different physics of image acquisition and the different principles of 2D vs. 3D approaches. As strain measurements are not interchangeable, it is highly desirable to work with validated strain assessment tools, in order to derive information from evidence-based data. There is, however, a lack of solid validation of the current tissue tracking techniques, as only a few of the commercial deformation imaging softwares have been properly investigated. We have, therefore, addressed in this review the neglected issue of suboptimal validation of tissue tracking techniques, in order to advocate for this matter.
In this paper we present a benchmarking framework for the validation of cardiac motion analysis algorithms. The reported methods are the response to an open challenge that was put to the medical imaging community through a MICCAI workshop. The database included magnetic resonance (MR) and 3D ultrasound (3DUS) datasets from a dynamic phantom and 15 healthy volunteers. Participants processed 3D tagged MR datasets (3DTAG), cine steady state free precession MR datasets (SSFP) and 3DUS datasets, amounting to 1158 image volumes. Ground-truth for motion tracking was based on 12 landmarks (4 walls at 3 ventricular levels). They were manually tracked by two observers in the 3DTAG data over the whole cardiac cycle, using an in-house application with 4D visualization capabilities. The median of the inter-observer variability was computed for the phantom dataset (0.77mm) and for the volunteer datasets (0.84mm). The ground-truth was registered to 3DUS coordinates using a point based similarity transform. Four institutions responded to the challenge by providing motion estimates for the data: Fraunhofer MEVIS (MEVIS), Bremen, Germany; Imperial College London -University College London (IUCL), UK; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Inria-Asclepios project (INRIA), France. Details on the implementation and evaluation of the four methodologies are presented in this manuscript. The manually tracked landmarks were used to evaluate tracking accuracy of all methodologies. For 3DTAG, median values were computed over all time frames for the phantom dataset (MEVIS=1.20mm, IUCL=0.73mm, UPF=1.10mm, INRIA=1.09mm) and for the volunteer datasets (MEVIS=1.33mm, IUCL=1.52mm, UPF=1.09mm, INRIA=1.32mm). For 3DUS, median values were computed at end diastole and end systole for the phantom dataset (MEVIS=4.40mm, UPF=3.48mm, INRIA=4.78mm) and for the volunteer datasets (MEVIS=3.51mm, UPF=3.71mm, INRIA=4.07mm). For SSFP, median values were computed at end diastole and end systole for the phantom dataset (UPF=6.18mm, INRIA=3.93mm) and for the volunteer datasets (UPF=3.09mm, INRIA=4.78mm). Finally, strain curves were generated and qualitatively compared. Good agreement was found between the different modalities and methodologies, except for radial strain that showed a high variability in cases of lower image quality.
This paper presents a new registration algorithm, called Temporal Diffeomorphic Free Form Deformation (TDFFD), and its application to motion and strain quantification from a sequence of 3D ultrasound (US) images. The originality of our approach resides in enforcing time consistency by representing the 4D velocity field as the sum of continuous spatiotemporal B-Spline kernels. The spatiotemporal displacement field is then recovered through forward Eulerian integration of the non-stationary velocity field. The strain tensor is computed locally using the spatial derivatives of the reconstructed displacement field. The energy functional considered in this paper weighs two terms: the image similarity and a regularization term. The image similarity metric is the sum of squared differences between the intensities of each frame and a reference one. Any frame in the sequence can be chosen as reference. The regularization term is based on the incompressibility of myocardial tissue. TDFFD was compared to pairwise 3D FFD and 3D+t FFD, both on displacement and velocity fields, on a set of synthetic 3D US images with different noise levels. TDFFD showed increased robustness to noise compared to these two state-of-the-art algorithms. TDFFD also proved to be more resistant to a reduced temporal resolution when decimating this synthetic sequence. Finally, this synthetic dataset was used to determine optimal settings of the TDFFD algorithm. Subsequently, TDFFD was applied to a database of cardiac 3D US images of the left ventricle acquired from 9 healthy volunteers and 13 patients treated by Cardiac Resynchronization Therapy (CRT). On healthy cases, uniform strain patterns were observed over all myocardial segments, as physiologically expected. On all CRT patients, the improvement in synchrony of regional longitudinal strain correlated with CRT clinical outcome as quantified by the reduction of end-systolic left ventricular volume at follow-up (6 and 12 months), showing the potential of the proposed algorithm for the assessment of CRT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.